test_dapo_7b_math.sh 5.75 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env bash
set -xeuo pipefail

project_name='DAPO'
exp_name='DAPO-Qwen2.5-7b-MATH-0527a1'

adv_estimator=grpo

use_kl_in_reward=False
kl_coef=0.0
use_kl_loss=False
kl_loss_coef=0.0

clip_ratio_low=0.4
clip_ratio_high=0.4

max_prompt_length=$((1024 * 2))
max_response_length=$((1024 * 8))
enable_overlong_buffer=True
overlong_buffer_len=$((1024 * 4))
overlong_penalty_factor=1.0

loss_agg_mode="token-mean"

train_prompt_bsz=512
n_resp_per_prompt=16
train_prompt_mini_bsz=32

# Ray
# RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"}
# WORKING_DIR=${WORKING_DIR:-"${PWD}"}
# RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"}
NNODES=${NNODES:-8}
NGPUS_PER_NODE=${NGPUS_PER_NODE:-8}
# Paths
RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"}
# very important! please modify the max_position_embeddings in config.json to 32768 after downloading from huggingface
MODEL_PATH=${MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen2.5-Math-7B"}
CKPTS_DIR=${CKPTS_DIR:-"${RAY_DATA_HOME}/ckpts/${project_name}/${exp_name}"}
TRAIN_FILE=${TRAIN_FILE:-"${RAY_DATA_HOME}/data/dapo-math-17k.parquet"}
TEST_FILE=${TEST_FILE:-"${RAY_DATA_HOME}/data/aime-2024.parquet"}

# Algorithm
temperature=1.0
top_p=1.0
top_k=-1 # 0 for HF rollout, -1 for vLLM rollout
val_top_p=0.7

# Performance Related Parameter
sp_size=4
use_dynamic_bsz=True
actor_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 2))
infer_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 3))
offload=True
gen_tp=4
fsdp_size=32

loss_mode=geo_mean

# export WANDB_MODE=offline
save_contents="['model', 'optimizer', 'extra']"
# save_contents="['hf_model']"

# reference run wandb: https://wandb.ai/verl-org/DAPO%20Reproduction%20on%20verl/runs/ow47vvon?nw=nwusertongyuxuan361

python3 -m verl.trainer.main_ppo \
    data.train_files="${TRAIN_FILE}" \
    data.val_files="${TEST_FILE}" \
    data.prompt_key=prompt \
    data.truncation='left' \
    data.max_prompt_length=${max_prompt_length} \
    data.max_response_length=${max_response_length} \
    data.train_batch_size=${train_prompt_bsz} \
    actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
    algorithm.adv_estimator=${adv_estimator} \
    algorithm.use_kl_in_reward=${use_kl_in_reward} \
    algorithm.kl_ctrl.kl_coef=${kl_coef} \
    actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \
    actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \
    actor_rollout_ref.actor.policy_loss.loss_mode=${loss_mode} \
    actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \
    actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \
    actor_rollout_ref.model.use_remove_padding=True \
    +actor_rollout_ref.model.override_config.max_position_embeddings=32768 \
    actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \
    actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \
    actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \
    actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \
    actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
    actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
    actor_rollout_ref.rollout.name=vllm \
    actor_rollout_ref.model.path="${MODEL_PATH}" \
    actor_rollout_ref.model.enable_gradient_checkpointing=True \
    actor_rollout_ref.actor.optim.lr=1e-6 \
    actor_rollout_ref.actor.optim.lr_warmup_steps=10 \
    actor_rollout_ref.actor.optim.weight_decay=0.1 \
    actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \
    actor_rollout_ref.actor.fsdp_config.param_offload=${offload} \
    actor_rollout_ref.actor.fsdp_config.optimizer_offload=${offload} \
    actor_rollout_ref.actor.entropy_coeff=0 \
    actor_rollout_ref.actor.grad_clip=1.0 \
    actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \
    actor_rollout_ref.actor.ulysses_sequence_parallel_size=${sp_size} \
    actor_rollout_ref.rollout.gpu_memory_utilization=0.80 \
    actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \
    actor_rollout_ref.rollout.enable_chunked_prefill=True \
    actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \
    actor_rollout_ref.rollout.temperature=${temperature} \
    actor_rollout_ref.rollout.top_p=${top_p} \
    actor_rollout_ref.rollout.top_k=${top_k} \
    actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \
    actor_rollout_ref.rollout.val_kwargs.top_p=${val_top_p} \
    actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \
    actor_rollout_ref.rollout.val_kwargs.do_sample=True \
    actor_rollout_ref.rollout.val_kwargs.n=1 \
    actor_rollout_ref.ref.fsdp_config.param_offload=${offload} \
    actor_rollout_ref.ref.ulysses_sequence_parallel_size=${sp_size} \
    actor_rollout_ref.actor.fsdp_config.fsdp_size=${fsdp_size} \
    actor_rollout_ref.actor.checkpoint.save_contents="${save_contents}" \
    reward_model.reward_manager=dapo \
    +reward_model.reward_kwargs.overlong_buffer_cfg.enable=${enable_overlong_buffer} \
    +reward_model.reward_kwargs.overlong_buffer_cfg.len=${overlong_buffer_len} \
    +reward_model.reward_kwargs.overlong_buffer_cfg.penalty_factor=${overlong_penalty_factor} \
    +reward_model.reward_kwargs.overlong_buffer_cfg.log=False \
    +reward_model.reward_kwargs.max_resp_len=${max_response_length} \
    trainer.logger='["console","wandb"]' \
    trainer.project_name="${project_name}" \
    trainer.experiment_name="${exp_name}" \
    trainer.n_gpus_per_node="${NGPUS_PER_NODE}" \
    trainer.nnodes="${NNODES}" \
    trainer.val_before_train=True \
    trainer.test_freq=10 \
    trainer.save_freq=10 \
    trainer.total_epochs=10 \
    trainer.total_training_steps=200 \
    trainer.default_local_dir="${CKPTS_DIR}" \
    trainer.resume_mode=auto \
    trainer.log_val_generations=10