megatron_workers.rst 12 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
Megatron-LM Backend
===================

Last updated: 06/24/2025.

We support Megatron Backend by implementing various workers for actor,
critic, reference, rollout and reward models. We also implement the
``3DHybridEngine`` using Megatron-LM and vLLM/SGLang in
`megatron_vllm.py <https://github.com/volcengine/verl/blob/main/verl/workers/sharding_manager/megatron_vllm.py>`_
and `megatron_sglang.py <https://github.com/volcengine/verl/blob/main/verl/workers/sharding_manager/megatron_sglang.py>`_.

**Pros**

- Support 5D parallelism (TP, EP, CP, DP, PP) and sequence parallelism
  for best scalablility and throughput.
- 3D HybridEngine can significantly reduce peak memory usage and reduce
  weight synchronize overhead between actor and rollout.

**Cons**

- Huggingface Models and Megatron checkpoints need tools for conversion.


Development Progress
--------------------


Note that [Deprecated] means that the feature is not supported in the latest
version of verl.
[To-Optimize] means that the feature is implemented but not optimized yet.
[WIP] means that the feature is working in progress.
[In-Release] means that the feature is ready and in review process,
coming at any time.


+---------------+-----------------------------------------------------------+
| [Deprecated]  | Megatron 3D Parallelism with custom models                |
+---------------+-----------------------------------------------------------+
| [Done]        | Megatron 0.11.0 ``GPTModel`` support                      |
+---------------+-----------------------------------------------------------+
| [Done]        | Megatron GRPO support                                     |
+---------------+-----------------------------------------------------------+
| [Done]        | Megatron with vLLM 0.8.2, with per-tensor weights loading |
+---------------+-----------------------------------------------------------+
| [Done]        | Megatron with Context Parallel                            |
+---------------+-----------------------------------------------------------+
| [Done]        | Qwen2MoE model support                                    |
+---------------+-----------------------------------------------------------+
| [To-Optimize] | Megatron dist Checkpoint                                  |
+---------------+-----------------------------------------------------------+
| [To-Optimize] | Huggingface and Megatron Checkpoint Converter             |
+---------------+-----------------------------------------------------------+
| [To-Optimize] | Efficient fused linear, entropy and cross entropy         |
+---------------+-----------------------------------------------------------+
| [Done]        | Megatron offload(param, grad, optimizer)                  |
+---------------+-----------------------------------------------------------+
| [Done]        | Megatron Profiler                                         |
+---------------+-----------------------------------------------------------+
| [In-Release]  | Megatron 0.12.0, TE 2.2 with vLLM 0.8.3 and Fused Attn    |
+---------------+-----------------------------------------------------------+
| [WIP]         | Moonlight/DeepSeek-V3 model support                       |
+---------------+-----------------------------------------------------------+
| [WIP]         | Expert Parallel support                                   |
+---------------+-----------------------------------------------------------+
| [WIP]         | Megatron support dynamic batch size                       |
+---------------+-----------------------------------------------------------+
| [To-Do]       | Performance tuning                                        |
+---------------+-----------------------------------------------------------+
| [MileStone]   | Runnable with DeepSeek-V3 671B post-training              |
+---------------+-----------------------------------------------------------+



Utils of Megatron Workers
-------------------------

MegatronWorker
^^^^^^^^^^^^^^

``MegatronWorker`` is the base class of different megatron worker
classes. In this class, ``get_megatron_global_info`` and
``get_megatron_rank_info`` function to retrieve the 3D parallel world
size and rank of each ``Worker`` running on specific GPU. These information
will be used in transfer protocol for Megatron Backend.

The following ``Worker`` class for different models will be utilized to
construct the ``WorkerGroup`` .

We implement various of APIs for each ``Worker`` class decorated by the
``@register(dispatch_mode=)`` . These APIs can be called by the ray
driver process. The data can be correctly collect and dispatch following
the ``dispatch_mode`` on each function. The supported dispatch_model
(i.e., transfer protocols) can be found in `decorator.py <https://github.com/volcengine/verl/blob/main/verl/single_controller/base/decorator.py>`_.

ActorRolloutRefWorker
^^^^^^^^^^^^^^^^^^^^^

This class is implemented for Actor/Rollout HybridEngine or for the
reference model to initialize their model and perform computation.

Actor/Rollout HybridEngine
''''''''''''''''''''''''''

1. HybridEngine, Actor and Rollout initialization API.

.. code:: python

   @register(dispatch_mode=Dispatch.ONE_TO_ALL)
   def init_model(self):

``ONE_TO_ALL``: when calling the ``init_model`` function from the driver
process, each worker (on a GPU) will execute the following model
initialization process.

The initialization details of HybridEngine, Actor and Rollout are
highlighted below:

1. ``MegatronPPOActor`` implements the simple PPO computation logics
   when the model is built with Megatron, including compute log prob,
   model update.
2. ``vLLMRollout`` support generation with vLLM. We modify the vLLM
   Engine and make it executed under SPMD to fit into our
   ``WorkerGroup`` design.
3. ``MegatronVLLMShardingManager`` a context manager to perform actual
   resharding between actor and rollout.

See `source code <https://github.com/volcengine/verl/blob/main/verl/workers/megatron_workers.py#L63>`_ for more information.

.. code:: python

   # build actor model
   self.actor = MegatronPPOActor(config=self.config.actor,
                                 model_config=self.actor_model_config,
                                 megatron_config=megatron_config,
                                 actor_module=self.actor_module,
                                 actor_optimizer=self.actor_optimizer,
                                 actor_optimizer_config=self.actor_optim_config)

   # build rollout
   # rollout initialization
   rollout = vLLMRollout(actor_module=params,
                        config=self.config.rollout,
                        tokenizer=self.tokenizer,
                        model_hf_config=self.actor_model_config,
                        train_tp=mpu.get_tensor_model_parallel_world_size())
   # perform weight resharding between actor and rollout
   sharding_manager = MegatronVLLMShardingManager(module=self.hybrid_engine,
                                                  inference_engine=rollout.inference_engine,
                                                  model_config=self.actor_model_config,
                                                  layer_name_mapping=layer_name_mapping)
   ...

1. Generate sequence and recompute log prob

.. code:: python

   @register(dispatch_mode=Dispatch.MEGATRON_PP_AS_DP_PROTO)
   def generate_sequences(self, prompts: DataProto):

- ``Dispatch.MEGATRON_PP_AS_DP_PROTO``: The PP dimension of the actor
  model will be regarded as DP dimension. Then the driver process will
  dispatch and collect the data according to this reorganization. This
  is because, in HybridEngine, the actor weight, which usually applied
  larger 3D parallel sizes, will be gathered along the PP dimension and
  TP dimension. Therefore, the corresponding data should be dispatched
  and collected through the 3D parallel group of the rollout model,
  rather than the actor model. However, the world_size and rank
  information can only be retrieved from ``get_megatron_global_info`` and
  ``get_megatron_rank_info``, which records the 3D information for the
  actor model. Moreover, the data resharding inside TP dimension will be
  processed within the HybridEngine.

- In this function, the rollout model will perform auto-regressive
  generation and the actor model will recompute the old log prob for the
  generated response.

3. Update actor model

.. code:: python

   @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO)
   def update_actor(self, data: DataProto):

- ``Dispatch.MEGATRON_COMPUTE_PROTO``: User passes the data partitioned
  by DP dimension. The data is dispatched to all tp/pp ranks within the
  same dp group, and ultimately only collects output data from tp=0 and
  the last pp.
- Update the actor model weight using PPO & entropy loss.


..note:: 

   Currently, training Tensor Parallel Size can be different from inference
   Tensor Parallel Size.


ReferenceModel
''''''''''''''

1. Reference model initialization

The reference model is initialized using the same function as the actor
model without initializing the HybridEngine and Optimizer. Then the
actor model is also wrapped by the ``MegatronPPOActor``.

2. Compute reference log prob

.. code:: python

   @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO)
   def compute_ref_log_prob(self, data: DataProto):

- In this function, the reference model will call the compute log prob
  function in ``MegatronPPOActor`` to compute the reference log prob.

CriticWorker and RewardWorker
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1. Model initialization

Quite similar to reference model. The CriticWorker will perform
additional initialization for the Optimizer.

2. Compute Values for CriticWorker

.. code:: python

   @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO)
   def compute_values(self, data: DataProto):

3. Update Critic

.. code:: python

   @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO)
   def update_critic(self, data: DataProto):

4. Compute Reward

.. code:: python

   @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO)
   def compute_rm_score(self, data: DataProto):


Utils of Train Optimization
---------------------------

Offload
^^^^^^^
When resources are tight, the offload method can lower GPU memory 
usage, helping training and inference frameworks work well under verl. 
It moves parameters, gradients, and optimizers to CPU memory and only 
loads them back to the GPU when needed.

If you want to use the offload, you can add the following parameters 
for the actor and ref separately. 

.. code:: python

   # For the actor
   actor_rollout_ref.actor.megatron.param_offload=True \
   actor_rollout_ref.actor.megatron.grad_offload=True \
   actor_rollout_ref.actor.megatron.optimizer_offload=True \
   # For the ref w/o grad and optimizer
   actor_rollout_ref.ref.megatron.param_offload=True \


For the critic, you can include these parameters.

.. code:: python

   # For the critic
   critic.megatron.param_offload=True \
   critic.megatron.grad_offload=True \
   critic.megatron.optimizer_offload=True \

Profiler
^^^^^^^^

The profiler is a tool that helps you understand the performance of your 
model. It can be used to profile the time spent on different operations 
and identify the bottlenecks. You can get more information from 
`torch.profiler <https://pytorch.org/docs/stable/profiler.html>`_.

In verl, now the profiler is only support for the actor role In Megatron. You can set 
the begin step and end step to profile. Notice, one step means one gradient update. And 
the profile result will be saved in the save_path. If you just want to profile in the 
specific rank, you can set the profile_ranks, by default, it will be [0].

.. code:: python

   actor_rollout_ref.actor.profile.use_profile=True \
   actor_rollout_ref.actor.profile.profile_ranks=[0] \
   actor_rollout_ref.actor.profile.step_start=0 \
   actor_rollout_ref.actor.profile.step_end=1 \
   actor_rollout_ref.actor.profile.save_path="./profile"


Related MCore Document
----------------------

There is also a detailed document of using MCore to train different
kinds of models, please refer to `MCore Document <https://github.com/volcengine/verl/blob/main/verl/models/mcore/readme.md>`_.