multinode.rst 20.7 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
Multinode Training
==================

Last updated: 06/10/2025.

.. _wuxibin89: https://github.com/wuxibin89

Author: `Xibin Wu <https://github.com/wuxibin89>`_, `Yusheng Su <https://yushengsu-thu.github.io/>`_.

Manual
------

Set up multinode ray cluster
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Start head node with ``ray start --head --dashboard-host=0.0.0.0``, there're 2 address you should care about:

- GCS address: ``ray start --address=<address>``, where worker node should connect to.
- Dashboard address: ``<address>:8265``, where you should submit job to the cluster.

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/head.png?raw=true

2. Start worker node with ``ray start --address=<address>`` you get above.

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/worker.png?raw=true

3. Now you should see the cluster have 2 nodes with ``ray status``.

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/status.png?raw=true

4. Additionally, you can access dashboard in the browser with the address you get above. 

*Firewall rules maybe need configure to access the dashboard, if there's any trouble, please contact your network administrator.*

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/overview.png?raw=true

Submit job to ray cluster
~~~~~~~~~~~~~~~~~~~~~~~~~
1. Submit ray job to cluster with the dashboard address you get above.

.. code-block:: bash

    ray job submit --address="http://127.0.0.1:8265" \
        --runtime-env=verl/trainer/runtime_env.yaml \
        --no-wait \
        -- \
        python3 -m verl.trainer.main_ppo \
        trainer.n_gpus_per_node=8 \
        trainer.nnodes=2 \
        ...

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/submit.png?raw=true

2. Then you can check the job status with the following commands:

- ray job list: list all jobs submitted to the cluster.
- ray job logs <Submission ID>: query the logs of the job.
- ray job status <Submission ID>: query the status of the job.
- ray job stop <Submission ID>: request the job to be stopped.

3. You can also access driver/task/actor logs in ``/tmp/ray/session_latest/logs/``, driver log is ``job-driver-raysubmit_<Submission ID>.log``.

4. We strongly recommend you to view job detail from dashboard in multinode training, because it provide more structure way to view the job information.

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/job.png?raw=true
.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/job_detail.png?raw=true


Slurm
-----
TBD

dstack
------
`dstackai/dstack <https://github.com/dstackai/dstack>`_ is an open-source container orchestrator that simplifies distributed training across cloud providers and on-premises environments
without the need to use K8S or Slurm.

Prerequisite
~~~~~~~~~~~~
Once dstack is `installed <https://dstack.ai/docs/installation>`_, initialize the directory as a repo with ``dstack init``. 

.. code-block:: bash

    mkdir myproject && cd myproject
    dstack init

**Create a fleet**

Before submitting distributed training jobs, create a `dstack` `fleet <https://dstack.ai/docs/concepts/fleets>`_.

Run a Ray cluster task
~~~~~~~~~~~~~~~~~~~~~~

Once the fleet is created, define a Ray cluster task, e.g. in ``ray-cluster.dstack.yml``:

.. code-block:: yaml

    type: task
    name: ray-verl-cluster

    nodes: 2

    env:
        - WANDB_API_KEY
        - PYTHONUNBUFFERED=1
        - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
    
    image: whatcanyousee/verl:ngc-cu124-vllm0.8.5-sglang0.4.6-mcore0.12.0-te2.2
    commands:
        - git clone https://github.com/volcengine/verl
        - cd verl
        - pip install --no-deps -e .
        - pip install hf_transfer hf_xet
        - |
        if [ $DSTACK_NODE_RANK = 0 ]; then
            python3 examples/data_preprocess/gsm8k.py --local_dir ~/data/gsm8k
            python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2.5-7B-Instruct')" 
            ray start --head --port=6379;
        else
            ray start --address=$DSTACK_MASTER_NODE_IP:6379
        fi

    # Expose Ray dashboard port
    ports:
        - 8265

    resources:
        gpu: 80GB:8
        shm_size: 128GB

    # Save checkpoints on the instance
    volumes:
        - /checkpoints:/checkpoints

Now, if you run this task via `dstack apply`, it will automatically forward the Ray's dashboard port to `localhost:8265`.

.. code-block:: bash

    dstack apply -f ray-cluster.dstack.yml

As long as the `dstack apply` is attached, you can use `localhost:8265` to submit Ray jobs for execution

Submit Ray jobs
~~~~~~~~~~~~~~~

Before you can submit Ray jobs, ensure to install `ray` locally:
   
.. code-block:: shell

    pip install ray

Now you can submit the training job to the Ray cluster which is available at ``localhost:8265``:
   
.. code-block:: shell

    $ RAY_ADDRESS=http://localhost:8265
    $ ray job submit \
        -- python3 -m verl.trainer.main_ppo \
        data.train_files=/root/data/gsm8k/train.parquet \
        data.val_files=/root/data/gsm8k/test.parquet \
        data.train_batch_size=256 \
        data.max_prompt_length=512 \
        data.max_response_length=256 \
        actor_rollout_ref.model.path=Qwen/Qwen2.5-7B-Instruct \
        actor_rollout_ref.actor.optim.lr=1e-6 \
        actor_rollout_ref.actor.ppo_mini_batch_size=64 \
        actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
        actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
        actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
        actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \
        actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
        critic.optim.lr=1e-5 \
        critic.model.path=Qwen/Qwen2.5-7B-Instruct \
        critic.ppo_micro_batch_size_per_gpu=4 \
        algorithm.kl_ctrl.kl_coef=0.001 \
        trainer.project_name=ppo_training \
        trainer.experiment_name=qwen-2.5-7B \
        trainer.val_before_train=False \
        trainer.n_gpus_per_node=8 \
        trainer.nnodes=2 \
        trainer.default_local_dir=/checkpoints \
        trainer.save_freq=10 \
        trainer.test_freq=10 \
        trainer.total_epochs=15 2>&1 | tee verl_demo.log \
        trainer.resume_mode=disable


For more details on how `dstack` works, check out its `documentation <https://dstack.ai/docs>`_.

How to debug?
---------------------


Ray Distributed Debugger VSCode Extension (Recommended)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. Starting with Ray 2.39, Anyscale has introduced the `Ray Distributed Debugger <https://docs.ray.io/en/latest/ray-observability/ray-distributed-debugger.html>`_ VSCode extension. Follow the extension’s installation instructions, then add your cluster using the dashboard URL you obtained earlier.

   .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/debugger.png?raw=true
      :alt: Ray Distributed Debugger VSCode extension screenshot

2. Prerequisites.

   Ensure the following are installed (see the extension README for more detail):

   - Visual Studio Code  
   - `ray[default]` >= 2.9.1  
   - `debugpy` >= 1.8.0  

   .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/c7098b755ff689859837773a916c857.png?raw=true
      :alt: VSCode with Ray prerequisites

3. Environment Variables.

   To enable post‑mortem debugging, set:

   .. code-block:: bash

      export RAY_DEBUG_POST_MORTEM=1

   .. admonition:: Note
      :class: important

      Be sure to remove any legacy flags before starting Ray:

      - `RAY_DEBUG=legacy`  
      - `--ray-debugger-external`

4. Configuring BreakpointsSet up breakpoint() in your code, and submit job to cluster. Then the extension will show the breakpoint information.


   1. Insert `breakpoint()` calls into your remote functions.  
   2. Submit your job to the cluster.  

   The extension will detect active breakpoints and display them in VSCode.

   .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/4ddad74395c79a1402331c0ce73316f.png?raw=true
      :alt: Detected breakpoint in VSCode

   **Note:** Breakpoints are only supported inside functions decorated with `@ray.remote`.

5. Launching the Debugger.

   Run your job directly from the command line (do not use a `launch.json`):

   .. code-block:: bash

      python job.py

6. Attaching to a Breakpoint.

 Once the process hits the first `breakpoint()`, click the Ray Distributed Debugger icon in the VSCode sidebar to attach the debugger.

   .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/4ddad74395c79a1402331c0ce73316f.png?raw=true
      :alt: Attaching VSCode debugger to Ray process

7. Debugging With Multiple breakpoint().

   For each subsequent task, first disconnect the current debugger session, then click the extension icon again to attach to the next breakpoint.

   .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/6e83c910a62c82fecb89c6619e001cd.png?raw=true
      :alt: Disconnecting and reconnecting the debugger

Legacy Ray Debugger
~~~~~~~~~~~~~~~~~~~
1. Ray has a builtin legacy `debugger <https://docs.ray.io/en/latest/ray-observability/user-guides/debug-apps/ray-debugging.html>`_ that allows you to debug your distributed applications. To enable debugger, start ray cluster with ``RAY_DEBUG=legacy`` and ``--ray-debugger-external``.

.. code-block:: bash

    # start head node
    RAY_DEBUG=legacy ray start --head --dashboard-host=0.0.0.0 --ray-debugger-external
    # start worker node
    RAY_DEBUG=legacy ray start --address='10.124.46.192:6379' --ray-debugger-external

2. Set up breakpoint in your code, and submit job to cluster. Then run ``ray debug`` to wait breakpoint:

.. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/legacy.png?raw=true


Multi-node training on AMD clusters
---------------------------------------------------------------------------------------

If you want to run multi-node training with slurm with Docker/Podman container on AMD Cluster, you can use the following script. 

If you encounter any issues in using AMD GPUs running verl, please contact `Yusheng Su <https://yushengsu-thu.github.io/>`_.

.. note::
    1. You need to use ``podman`` or ``docker`` in the following script. We will release the apptainer script later.
    2. If you want to use ``podman``, you just replace ``docker`` with ``podman`` in the following script.

The script includes the following steps:

1. SLURM Configuration
2. Environment Setup
3. Docker/Podman Container Setup
4. Ray Cluster Initialization
5. Data Preprocessing
6. Model Setup
7. Training Launch


slurm_script.sh
~~~~~~~~~~~~~~~~~~~~

.. code-block:: bash

    #!/bin/bash

    #SBATCH --job-name=verl-ray-on-slurm
    #SBATCH --nodes=2
    #SBATCH --ntasks-per-node=2
    #SBATCH --mem=200G
    #SBATCH --time=30-00:00:00
    #SBATCH --gpus-per-node=8
    #SBATCH --cpus-per-task=28
    #SBATCH --output=../verl_log/slurm-%j.out
    #SBATCH --error=../verl_log/slurm-%j.err
    #SBATCH --nodelist=gpu-[0,1]


    # load necessary modules
    ### Run this setup
    # [Cluster]: Use docker
    # docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4


    ##########################################################################
    ###The following setting should be set in different project and cluster###
    ##########################################################################

    ### Project
    CONTAINER_NAME="multinode_verl_training"
    IMG="verl.rocm"
    DOCKERFILE="docker/Dockerfile.rocm"
    # echo $PWD
    verl_workdir="${HOME}/projects/verl_upstream"
    export TRANSFORMERS_CACHE="${HOME}/.cache/huggingface"
    export HF_HOME=$TRANSFORMERS_CACHE

    ### Cluster Network Setting
    export NCCL_DEBUG=TRACE
    export GPU_MAX_HW_QUEUES=2
    export TORCH_NCCL_HIGH_PRIORITY=1
    export NCCL_CHECKS_DISABLE=1
    # export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7 
    export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
    export NCCL_IB_GID_INDEX=3
    export NCCL_CROSS_NIC=0
    export CUDA_DEVICE_MAX_CONNECTIONS=1
    export NCCL_PROTO=Simple
    export RCCL_MSCCL_ENABLE=0
    export TOKENIZERS_PARALLELISM=false
    export HSA_NO_SCRATCH_RECLAIM=1
    ##########################################################################

    ### For rocm and training script
    export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
    export ROCR_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES
    export CUDA_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES


    # Build and launch the Docker container
    srun bash -c "
        # Exit on any error
        set -e 

        # Clean up dangling images (images with <none> tag)
        docker image prune -f

        # Need to pull the docker first
        docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
        
        if ! docker images --format "{{.Repository}}:{{.Tag}}" | grep -q "${IMG}"; then
            echo \"Building ${IMG} image...\"
            docker build -f \"${DOCKERFILE}\" -t \"${IMG}\" .
        else
            echo \"${IMG} image already exists, skipping build\"
        fi

        # Removing old container if exists
        docker rm \"${CONTAINER_NAME}\" 2>/dev/null || true

        # Checking network devices
        ibdev2netdev

        # Launch the docker
        docker run --rm -d \
        -e HYDRA_FULL_ERROR=1 \
        -e HIP_VISIBLE_DEVICES=${HIP_VISIBLE_DEVICES} \
        -e ROCR_VISIBLE_DEVICES=${ROCR_VISIBLE_DEVICES} \
        -e CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES} \
        -e NCCL_DEBUG=${NCCL_DEBUG} \
        -e GPU_MAX_HW_QUEUES=${GPU_MAX_HW_QUEUES} \
        -e TORCH_NCCL_HIGH_PRIORITY=${TORCH_NCCL_HIGH_PRIORITY} \
        -e NCCL_CHECKS_DISABLE=${NCCL_CHECKS_DISABLE} \
        -e NCCL_IB_HCA=${NCCL_IB_HCA} \
        -e NCCL_IB_GID_INDEX=${NCCL_IB_GID_INDEX} \
        -e NCCL_CROSS_NIC=${NCCL_CROSS_NIC} \
        -e CUDA_DEVICE_MAX_CONNECTIONS=${CUDA_DEVICE_MAX_CONNECTIONS} \
        -e NCCL_PROTO=${NCCL_PROTO} \
        -e RCCL_MSCCL_ENABLE=${RCCL_MSCCL_ENABLE} \
        -e TOKENIZERS_PARALLELISM=${TOKENIZERS_PARALLELISM} \
        -e HSA_NO_SCRATCH_RECLAIM=${HSA_NO_SCRATCH_RECLAIM} \
        -e TRANSFORMERS_CACHE=${TRANSFORMERS_CACHE} \
        -e HF_HOME=${HF_HOME} \
        --network host \
        --device /dev/dri \
        --device /dev/kfd \
        --device /dev/infiniband \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v \${HOME}:\${HOME} \
        -v \${HOME}/.ssh:/root/.ssh \
        -w "${verl_workdir}" \
        --shm-size 128G \
        --name \"${CONTAINER_NAME}\" \
        \"${IMG}\" \
        tail -f /dev/null

        echo \"Container setup completed\"
    "
        # (Optional): If you do not want to root mode and require assign yuorself as the user
        # Please add `-e HOST_UID=$(id -u)` and `-e HOST_GID=$(id -g)` into the above docker launch script. 





    ### Ray launch the nodes before training

    # Getting the node names
    nodes_array=($(scontrol show hostnames "$SLURM_JOB_NODELIST" | tr '\n' ' '))

    head_node=${nodes_array[0]}
    head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)

    # if we detect a space character in the head node IP, we'll
    # convert it to an ipv4 address. This step is optional.
    if [[ "$head_node_ip" == *" "* ]]; then
        IFS=' ' read -ra ADDR <<<"$head_node_ip"
    if [[ ${#ADDR[0]} -gt 16 ]]; then
        head_node_ip=${ADDR[1]}
    else
        head_node_ip=${ADDR[0]}
    fi
        echo "IPV6 address detected. We split the IPV4 address as $head_node_ip"
    fi

    port=6379
    ip_head=$head_node_ip:$port
    export ip_head
    echo "IP Head: $ip_head"

    # make sure we set environment variables before Ray initialization

    # Print out all env variables
    printenv

    echo "Starting HEAD at $head_node"
    srun --nodes=1 --ntasks=1 -w "$head_node" \
        docker exec "${CONTAINER_NAME}" \
            ray start --head --node-ip-address="$head_node_ip" --port=$port \
            --dashboard-port=8266 \
            --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
    # optional, though may be useful in certain versions of Ray < 1.0.
    sleep 10

    # number of nodes other than the head node
    worker_num=$((SLURM_JOB_NUM_NODES - 1))

    for ((i = 1; i <= worker_num; i++)); do
        node_i=${nodes_array[$i]}
        echo "Debug: Starting worker on node_i = ${node_i}"
        if [ -z "$node_i" ]; then
            echo "Error: Empty node name for worker $i"
            continue
        fi
        echo "Starting WORKER $i at $node_i"
        srun --nodes=1 --ntasks=1 -w "$node_i" \
            docker exec "${CONTAINER_NAME}" \
                ray start --address "$ip_head" --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
        sleep 5
    done




    # Ray initlization test (See whether any error in the above execution)
    echo "Testing Ray initialization in the slurm nodes..."
    docker exec "${CONTAINER_NAME}" python3 -c '
    import ray
    try:
        ray.init(address="auto")
        print("\n=== Ray Cluster Status ===")
        print(f"Number of nodes: {len(ray.nodes())}")
        for node in ray.nodes():
            print("Node: {}, Status: {}".format(node["NodeManagerHostname"], node["Alive"]))
            # print(f"Node: {node}")
        ray.shutdown()
        print("Ray initialization successful!")
    except Exception as e:
        print(f"Ray initialization failed: {str(e)}")
    '
    echo "=== Ray test completed ==="
    ######



    # Run data preprocessing

    echo "Starting data preprocessing..."
    docker exec "${CONTAINER_NAME}" \
        python3 "examples/data_preprocess/gsm8k.py" "--local_dir" "../data/gsm8k"

    echo "Starting data preprocessing..."
    docker exec "${CONTAINER_NAME}" \
        python3 "examples/data_preprocess/math_dataset.py" "--local_dir" "../data/math"

    train_files="../data/gsm8k/train.parquet"
    val_files="../data/gsm8k/test.parquet"

    # Download and test model
    echo "Loading model..."
    docker exec "${CONTAINER_NAME}" \
        python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')"
    MODEL_PATH="Qwen/Qwen2-7B-Instruct"

    # Set model path after pipeline test
    MODEL_PATH="Qwen/Qwen2.5-0.5B-Instruct"

    echo "== Data and model loading Done =="

    echo "Start to train..."

    docker exec "${CONTAINER_NAME}" \
        python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')"
    MODEL_PATH="Qwen/Qwen2-7B-Instruct"


    PYTHONUNBUFFERED=1 srun --overlap --nodes=${SLURM_NNODES} --ntasks=1 -w "$head_node" \
        docker exec "${CONTAINER_NAME}" \
        python3 -m verl.trainer.main_ppo \
        data.train_files=$train_files \
        data.val_files=$val_files \
        data.train_batch_size=1024 \
        data.max_prompt_length=1024 \
        data.max_response_length=1024 \
        actor_rollout_ref.model.path=$MODEL_PATH \
        actor_rollout_ref.model.enable_gradient_checkpointing=False \
        actor_rollout_ref.actor.optim.lr=1e-6 \
        actor_rollout_ref.model.use_remove_padding=True \
        actor_rollout_ref.actor.ppo_mini_batch_size=256 \
        actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \
        actor_rollout_ref.model.enable_gradient_checkpointing=True \
        actor_rollout_ref.actor.fsdp_config.param_offload=False \
        actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
        actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \
        actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
        actor_rollout_ref.rollout.name=vllm \
        actor_rollout_ref.rollout.gpu_memory_utilization=0.9 \
        actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16 \
        actor_rollout_ref.ref.fsdp_config.param_offload=True \
        critic.optim.lr=1e-5 \
        critic.model.use_remove_padding=True \
        critic.model.path=$MODEL_PATH \
        critic.model.enable_gradient_checkpointing=False \
        critic.ppo_micro_batch_size_per_gpu=8 \
        critic.model.fsdp_config.param_offload=False \
        critic.model.fsdp_config.optimizer_offload=False \
        algorithm.kl_ctrl.kl_coef=0.0001 \
        trainer.critic_warmup=0 \
        trainer.logger='["console","wandb"]' \
        trainer.project_name='verl_example' \
        trainer.experiment_name='Qwen2.5-32B-Instruct_function_rm' \
        trainer.n_gpus_per_node=${SLURM_GPUS_PER_NODE} \
        trainer.val_before_train=False \
        trainer.nnodes=${SLURM_NNODES} \
        trainer.save_freq=-1 \
        trainer.test_freq=10 \
        trainer.total_epochs=15


Run multi-node training with above slurm_script.sh
~~~~~~~~~~~~~~~~~~~~
Just sbatch your slurm_script.sh

.. code-block:: bash

    sbatch slurm_script.sh