baseline.md 8.31 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Algorithm Baselines

Last updated: 06/18/2025.

## Math related datasets

### GSM8k

Assuming GSM8k/math dataset is preprocessed via:

```bash
python3 examples/data_preprocess/*.py
```

Refer to the table below to reproduce RL training from different pre-trained checkpoints. Below is the performance on the GSM8k dataset if not specified otherwise. More comprehensive benchmark results areavailable in the recipe folder.


| Hardware    | Model                            | Method            | Test score   | Details |
|-------------|----------------------------------|-------------------|--------------|---------|
| NVIDIA GPU  | google/gemma-2-2b-it             | hf checkpoint     | 23.9         | [Huggingface](https://huggingface.co/google/gemma-2-2b-it#benchmark-results) |
| NVIDIA GPU  | google/gemma-2-2b-it             | SFT               | 52.06        | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/gemma-2-2b-it-sft-0.411.log) |
| NVIDIA GPU  | google/gemma-2-2b-it             | SFT + PPO         | 64.02        | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/gemma-2-2b-it-ppo-bsz512_4-prompt1024-resp-512-0.640.log), [wandb](https://api.wandb.ai/links/verl-team/h7ux8602) |
| NVIDIA GPU  | Qwen/Qwen2.5-0.5B-Instruct       | hf checkpoint     | 36.4         | [Qwen blog](https://qwenlm.github.io/blog/qwen2.5-llm/) |
| NVIDIA GPU  | Qwen/Qwen2.5-0.5B-Instruct       | PPO               | 56.7         | [command and log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-0.5B-bsz256_2-prompt1024-resp512-0.567.log) |
| NVIDIA GPU  | Qwen/Qwen2.5-0.5B-Instruct       | PRIME             | 58.7         | [script](https://github.com/volcengine/verl/blob/main/recipe/prime/run_prime_qwen.sh), [wandb](https://api.wandb.ai/links/zefan-wang-thu-tsinghua-university/rxd1btvb) |
| NVIDIA GPU  | Qwen/Qwen2.5-0.5B-Instruct       | GRPO-LoRA         | 54.3         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-0.5B-bsz64_2-prompt512-resp1024-lorarank32-score0.543.log)|
| NVIDIA GPU  | Qwen/Qwen2.5-1.5B-Instruct       | GRPO-LoRA         | 77.9         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-1.5B-bsz64_2-prompt512-resp1024-lorarank32-score0.779.log)|
| NVIDIA GPU  | Qwen/Qwen2.5-3B-Instruct         | GRPO-LoRA         | 86.1         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-3B-bsz64_2-prompt512-resp1024-lorarank32-score0.861.log)|
| NVIDIA GPU  | deepseek-ai/deepseek-llm-7b-chat | PPO (Megatron)    | 69.5 [1]     | [log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/deepseek-llm-7b-chat-megatron-bsz256_4-prompt512-resp512-0.695.log), [wandb](https://wandb.ai/verl-team/verl_megatron_gsm8k_examples/runs/10fetyr3) |
| NVIDIA GPU  | Qwen/Qwen2-7B-Instruct           | GRPO              | 89           | [script](https://github.com/volcengine/verl/blob/a65c9157bc0b85b64cd753de19f94e80a11bd871/examples/grpo_trainer/run_qwen2-7b_seq_balance.sh) |
| NVIDIA GPU  | Qwen/Qwen2-7B-Instruct           | GRPO (FSDP2)      | 89.8         | [log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/qwen2-7b-fsdp2.log) |
| NVIDIA GPU  | Qwen/Qwen2-7B-Instruct           | GRPO (Megatron)   | 89.6         | [log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/qwen2-7b_math_megatron.log) |
| NVIDIA GPU  | Qwen/Qwen2.5-7B-Instruct         | ReMax             | 97           | [script](https://github.com/eric-haibin-lin/verl/blob/main/examples/remax_trainer/run_qwen2.5-3b_seq_balance.sh), [wandb](https://wandb.ai/liziniu1997/verl_remax_example_gsm8k/runs/vxl10pln) |
| NVIDIA GPU  | Qwen/Qwen2.5-7B-Instruct         | SPPO              | 65.6 (MATH)  | [SPPO script](https://github.com/volcengine/verl/tree/main/recipe/sppo/README.md) |
| NVIDIA GPU  | Qwen/Qwen2.5-7B-Instruct         | GRPO-LoRA         | 93.4         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-7B-bsz64_8-prompt512-resp1024-lorarank32-score0.934.log)|
| NVIDIA GPU  | Mixtral-8x22B-Instruct-v0.1      | Instruct model    | 83.7         | [Qwen Blog](https://qwenlm.github.io/blog/qwen2.5-llm/) |
| NVIDIA GPU  | Mixtral-8x22B-Instruct-v0.1      | RLOO (Megatron)   | 92.3         | [wandb](https://api.wandb.ai/links/ppo_dev/sbuiuf2d) |
| NVIDIA GPU  | Qwen/Qwen2.5-7B-Instruct         | SPIN              | 92           | [script](https://github.com/volcengine/verl/tree/main/recipe/spin/README.md) |
| NVIDIA GPU  | Qwen/Qwen2-7B-Instruct           | GPG               | 88           | [log](https://github.com/diqiuzhuanzhuan/verldata/blob/main/run_logs/qwen2-7b_math.log), [wandb](https://wandb.ai/diqiuzhuanzhuan/verl_gpg_example_gsm8k_math/runs/ab86c4va) |
| NVIDIA GPU  | Qwen/Qwen2-7B-Instruct           | GPG (Megatron)    | 88           | [log](https://github.com/diqiuzhuanzhuan/verldata/blob/main/run_logs/qwen2-7b_math_megatron.log), [wandb](https://wandb.ai/diqiuzhuanzhuan/verl_gpg_example_gsm8k_math/runs/yy8bheu8) |
| NVIDIA GPU  | Qwen/Qwen2.5-VL-7B-Instruct      | GRPO (Megatron)   | 65.4 (GEO3k) | [script](https://github.com/volcengine/verl/blob/main/examples/grpo_trainer/run_qwen2_5_vl-7b-megatron.sh), [wandb](https://api.wandb.ai/links/megatron-core-moe-dev/1yngvkek) |
| AMD MI300   | deepseek-ai/deepseek-llm-7b-chat | PPO               | 70.5 [1]     | [log](https://github.com/yushengsu-thu/verl_training_log/blob/main/gsm8k/ppo_run_deepseek7b_llm.log) |
| AMD MI300   | deepseek-ai/deepseek-llm-7b-chat | GRPO              | 71.4 [1]     | [log](https://github.com/yushengsu-thu/verl_training_log/blob/main/gsm8k/grpo_run_deepseek7b_llm.log) |
| NVIDIA GPU  | Qwen/Qwen2.5-14B-Instruct         | GRPO-LoRA         | 94.6         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-14B-bsz64_8-prompt512-resp1024-lorarank32-score0.946.log)|
| NVIDIA GPU  | Qwen/Qwen2.5-32B-Instruct         | GRPO-LoRA         | 95.8         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-32B-bsz64_8-prompt512-resp1024-lorarank32-score0.958.log)|
| NVIDIA GPU  | Qwen/Qwen2.5-72B-Instruct         | GRPO-LoRA         | 96.0         | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-72B-bs64_8-prompt512-resp1024-lorarank32-score0.960.log)|

### DAPO math-17k

- Training DAPO math-17k dataset: https://huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k
- Testing: AIME'24: https://huggingface.co/datasets/BytedTsinghua-SIA/AIME-2024

Note:
- For Qwen/Qwen2.5-Math-7B, we directly modify the max_position_embeddings to 32768 without observing performance degradation in order to train longer response length.

| Hardware    | Model                       | Method                  | Test score | Details |
|-------------|-----------------------------|-------------------------|------------|---------|
| NVIDIA GPU  | Qwen/Qwen2.5-Math-7B (32k)  | DAPO                    | 36.3       | [command](https://github.com/volcengine/verl/blob/main/recipe/dapo/test_dapo_7b_math.sh), [logs](https://wandb.ai/verl-org/DAPO%20Reproduction%20on%20verl/runs/ow47vvon?nw=nwusertongyuxuan361)|
| NVIDIA GPU  | Qwen/Qwen2.5-7B-Instruct    | DAPO + Code Interpreter | 40.0       | [command](https://github.com/volcengine/verl/blob/main/recipe/retool/run_qwen2_7b_dapo.sh)|




## Coding related datasets

Below is the result on leetcode if not specified otherwise.

| Hardware    | Model                            | Method            | Test score   | Details |
|-------------|----------------------------------|-------------------|--------------|---------|
| NVIDIA GPU  | PRIME-RL/Eurus-2-7B-SFT          | RPIME             | 36.1         | [script](https://github.com/volcengine/verl/blob/main/recipe/prime/run_prime_qwen_code.sh), [swanlab](https://swanlab.cn/@wangzefan/prime_example/runs/7f541qhspgmy8nmhdlx35/chart) |


### Notes

[1] During evaluation, we have only extracted answers following the format `"####"`. A more flexible answer extraction, longer response length, and better prompt engineering may lead to a higher score.

[2] The default value of `actor_rollout_ref.actor.entropy_coeff` is set to `0.0` since verl 0.3.x on 2025-05-30, which is different from previous versions.