model.py 18.9 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities to create common models from huggingface
"""
import os
import warnings
from typing import Dict, Type, Optional

import numpy as np
import torch
from torch import nn
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, MistralForSequenceClassification, GenerationConfig
from verl.models.registry import ModelRegistry


class LambdaLayer(nn.Module):

    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, *args, **kwargs):
        return self.fn(*args, **kwargs)


def squeeze(x):
    return torch.squeeze(x, dim=-1)


def update_model_config(module_config, override_config_kwargs):
    for key, val in override_config_kwargs.items():
        setattr(module_config, key, val)


def get_huggingface_actor_config(model_name: str, override_config_kwargs=None, trust_remote_code=False) -> Dict:
    if override_config_kwargs is None:
        override_config_kwargs = {}
    assert isinstance(override_config_kwargs, Dict), \
        f'override_config_kwargs must be a dict, got {type(override_config_kwargs)}'
    module_config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code)
    update_model_config(module_config, override_config_kwargs)

    return module_config


def get_generation_config(
    model: str,
    trust_remote_code: bool = False,
) -> Optional[GenerationConfig]:
    try:
        return GenerationConfig.from_pretrained(model)
    except OSError:  # Not found
        try:
            config = get_huggingface_actor_config(
                model,
                trust_remote_code=trust_remote_code,
            )
            return GenerationConfig.from_model_config(config)
        except OSError:  # Not found
            return None


def create_huggingface_actor(model_name: str, override_config_kwargs=None, automodel_kwargs=None) -> nn.Module:
    """

    Args:
        model_name:
        override_config_kwargs:

    Returns:

    """
    if override_config_kwargs is None:
        override_config_kwargs = {}
    if automodel_kwargs is None:
        automodel_kwargs = {}
    assert isinstance(override_config_kwargs, Dict), \
        f'override_config_kwargs must be a dict, got {type(override_config_kwargs)}'
    module_config = get_huggingface_actor_config(model_name,
                                                 override_config_kwargs,
                                                 trust_remote_code=automodel_kwargs.get('trust_remote_code', False))
    module: nn.Module = AutoModelForCausalLM.from_config(module_config, **automodel_kwargs)
    return module


def create_huggingface_critic(model_name: str, override_config_kwargs=None, automodel_kwargs=None) -> nn.Module:
    """

    Args:
        model_name:
        override_config_kwargs:

    Returns:

    """
    critic_module: nn.Module = create_huggingface_actor(model_name,
                                                        override_config_kwargs=override_config_kwargs,
                                                        automodel_kwargs=automodel_kwargs)
    if automodel_kwargs is None:
        automodel_kwargs = {}
    torch_dtype = automodel_kwargs.get('torch_dtype', torch.float32)
    critic_module.lm_head = nn.Sequential(nn.Linear(critic_module.config.hidden_size, 1, dtype=torch_dtype),
                                          LambdaLayer(fn=squeeze))
    return critic_module


def get_model_size(model: nn.Module, scale='auto'):
    n_params = sum(p.numel() for p in model.parameters())

    if scale == 'auto':
        if n_params > 1e9:
            scale = 'B'
        elif n_params > 1e6:
            scale = 'M'
        elif n_params > 1e3:
            scale = 'K'
        else:
            scale = ''

    if scale == 'B':
        n_params = n_params / 1e9
    elif scale == 'M':
        n_params = n_params / 1e6
    elif scale == 'K':
        n_params = n_params / 1e3
    elif scale == '':
        pass
    else:
        raise NotImplemented(f'Unknown scale {scale}')

    return n_params, scale


def print_model_size(model: nn.Module, name: str = None):
    n_params, scale = get_model_size(model, scale='auto')
    if name is None:
        name = model.__class__.__name__
    print(f'{name} contains {n_params:.2f}{scale} parameters')


def create_random_mask(input_ids: torch.Tensor,
                       max_ratio_of_valid_token: float,
                       max_ratio_of_left_padding: float,
                       min_ratio_of_valid_token: float = 0):
    """Create a random mask given input_ids. Support left padding and right padding.
    Process:
    - Sample valid token length
    - Sample left_padding length
    - Generate padding

    Args:
        input_ids:
            shape (batch_size, seq_len)

    Returns:

    """
    assert max_ratio_of_valid_token > 0 and max_ratio_of_valid_token <= 1.
    assert max_ratio_of_left_padding >= 0 and max_ratio_of_left_padding < 1.
    assert min_ratio_of_valid_token <= max_ratio_of_valid_token

    batch_size, sequence_length = input_ids.shape
    max_num_valid_tokens = int(sequence_length * max_ratio_of_valid_token)
    min_num_valid_tokens = max(1, int(sequence_length * min_ratio_of_valid_token))
    max_left_padding = int(sequence_length * max_ratio_of_left_padding)
    assert max_num_valid_tokens + max_left_padding <= sequence_length
    assert max_num_valid_tokens > 0 and max_ratio_of_valid_token <= sequence_length
    masks = torch.ones_like(input_ids, dtype=torch.int64)
    # TODO: we can make this faster
    for i in range(batch_size):
        num_left_padding = np.random.randint(low=0, high=max_left_padding + 1, dtype=np.int64)
        num_valid = np.random.randint(low=min_num_valid_tokens, high=max_num_valid_tokens + 1, dtype=np.int64)

        for index in range(num_left_padding):
            masks[i, index] = 0

        for index in range(num_left_padding + num_valid, sequence_length):
            masks[i, index] = 0
    return masks


def compute_position_id_with_mask(mask):
    return torch.clip(torch.cumsum(mask, dim=-1) - 1, min=0, max=None)


def normalize_pp_vpp_params(params, num_hidden_layers, layer_name='layers'):
    """
    Normalize the pp vpp params into a complete named parameters.
    This is useful when gather parameters from pp ranks and passed to a model without pp

    params: Iterable[List[Dict[str, param]]]
        params contains a list of pp, with a list of vpp named_parameters in each vpp chunk.
    output: Dict[str, param]

    """

    def normalize_model_name(name, pp_rank, vpp_rank, pp_size, vpp_size, num_layers):
        """
        Transform the model name in each model_chunk in each pp stage into the name in inference engine
        """
        if vpp_size > 1:
            # print(f'try to bind vpp params to inference engine...')
            layers_per_pp = num_layers // pp_size
            layers_per_vpp = layers_per_pp // vpp_size
            pp_offset = layers_per_vpp * pp_rank
            vpp_offset = (layers_per_vpp * pp_size) * vpp_rank
            layer_offset = pp_offset + vpp_offset
        else:
            layers_per_pp = num_layers // pp_size
            layer_offset = layers_per_pp * pp_rank

        if layer_name in name:  # belong to an intermediate layer
            split_name = name.split('.')
            # find the num next to split_name
            for i, name in enumerate(split_name):
                if name == layer_name:
                    break
            layer_num_idx = i + 1
            # check the name
            assert len(split_name) >= layer_num_idx + 1, f'split_name = {split_name}'
            assert split_name[layer_num_idx].isdigit(), f'split_name = {split_name}'
            # increment layer_num_idx by layer_offset
            split_name[layer_num_idx] = str(int(split_name[layer_num_idx]) + layer_offset)
            name = '.'.join(split_name)  # weight name in inference_tp_model
        return name

    pp_size = len(params)
    for pp_rank in range(len(params)):
        vpp_size = len(params[pp_rank])
        for vpp_rank in range(vpp_size):
            for name, param in params[pp_rank][vpp_rank].items():
                normalized_name = normalize_model_name(name, pp_rank, vpp_rank, pp_size, vpp_size, num_hidden_layers)
                yield normalized_name, param


def get_parallel_model_from_config(config,
                                   megatron_config,
                                   pre_process=None,
                                   post_process=None,
                                   share_embeddings_and_output_weights=False,
                                   value=False):
    from megatron.core import ModelParallelConfig
    assert isinstance(megatron_config, ModelParallelConfig)
    model_class = _get_parallel_model_architecture_from_config(config, value)

    model = model_class(config,
                        megatron_config,
                        pre_process=pre_process,
                        post_process=post_process,
                        share_embeddings_and_output_weights=share_embeddings_and_output_weights)
    return model


def _get_parallel_model_architecture_from_config(config: PretrainedConfig, value=False) -> Type[nn.Module]:
    architectures = getattr(config, "architectures", [])
    for arch in architectures:
        model_cls = ModelRegistry.load_model_cls(arch, value)
        print(f'after load model cls')
        if model_cls is not None:
            return model_cls
    raise ValueError(f"Model architectures {architectures} are not supported for now. "
                     f"Supported architectures: {ModelRegistry.get_supported_archs()}")


def load_megatron_model_weights(config,
                                model_config,
                                parallel_model,
                                params_dtype,
                                is_value_model=False,
                                local_cache_path='~/.cache/verl/rlhf'):
    assert hasattr(model_config, "architectures"), "architectures cannot be empty when load weight!"
    architectures = getattr(model_config, "architectures", [])
    local_cache_path = os.path.expanduser(local_cache_path)

    if config.model.path.startswith("hdfs:"):
        from verl.utils.fs import copy_to_local
        print(f'start download from {config.model.path}')
        local_model_path = copy_to_local(src=config.model.path, cache_dir=local_cache_path)
        print('finish download')
    else:
        local_model_path = config.model.path
        print(f"load from local dir {local_model_path}")

    # TODO: to find a better way to load mistral7b-rm lm_head
    from verl.utils.fsdp_utils import get_init_weight_context_manager
    init_context = get_init_weight_context_manager(use_meta_tensor=not model_config.tie_word_embeddings)
    with init_context(), warnings.catch_warnings():
        warnings.simplefilter("ignore")
        if 'mistral7b-rm' in config.model.path:
            model = MistralForSequenceClassification.from_pretrained(
                local_model_path, device_map="auto", low_cpu_mem_usage=True)  # use score head instead of lm_head
            state_dict = model.state_dict()
            state_dict['lm_head.weight'] = state_dict['score.weight']
            state_dict['model.embed_tokens.weight'] = state_dict[
                'model.embed_tokens.weight'][:32000]  # workaround, 32001 -> 32000
            is_value_model = True
        else:
            model = AutoModelForCausalLM.from_pretrained(local_model_path,
                                                         torch_dtype="auto",
                                                         device_map="auto",
                                                         low_cpu_mem_usage=True)
            state_dict = model.state_dict()

    from verl.models.weight_loader_registry import get_weight_loader
    print(f'before weight loader: architectures = {architectures}...')
    for arch in architectures:
        print(f'call weight loader arch = {arch}, model config = {model.config}')
        weight_loader = get_weight_loader(arch)
        weight_loader(state_dict=state_dict,
                      wrapped_models=parallel_model,
                      config=model.config,
                      params_dtype=params_dtype,
                      is_value_model=is_value_model,
                      tie_word_embeddings=model_config.tie_word_embeddings)
    return model.config


# pad input_ids_rmpad, cu_seqlens and max_seqlen_in_batch to be divisible by tp
def pad_packed_inputs(unpad_tokens: torch.Tensor, cu_seqlens, max_seqlen_in_batch, size):
    """pad the tokens such that the total length is a multiple of size.
    This function is useful when applying sequence parallel and context parallel

    Args:
        unpad_tokens: (total_nnz, ...). Tokens after removing padding
        cu_seqlens: (total_nnz + 1,)
        max_seqlen_in_batch: int

    Returns:

    """
    F = nn.functional

    total_nnz = unpad_tokens.shape[0]

    if total_nnz % size == 0:
        pad_size = 0
    else:
        pad_size = size - total_nnz % size

    # we assume adding a new data in the batch with seqlen pad_size
    if pad_size > 0:
        if unpad_tokens.ndim == 1:
            unpad_tokens = F.pad(unpad_tokens, (0, pad_size))
        elif unpad_tokens.ndim == 2:
            unpad_tokens = F.pad(unpad_tokens, (0, 0, 0, pad_size))
        else:
            raise NotImplementedError(f'Padding dim {unpad_tokens.ndim()} is not supported')

        cu_seqlens = F.pad(cu_seqlens, (0, 1), value=pad_size + cu_seqlens[-1])
        max_seqlen_in_batch = max(max_seqlen_in_batch, pad_size)

    return unpad_tokens, cu_seqlens, max_seqlen_in_batch


def load_megatron_gptmodel_weights(config,
                                   model_config,
                                   parallel_model,
                                   params_dtype,
                                   is_value_model=False,
                                   local_cache_path='~/.cache/verl/rlhf'):
    assert hasattr(model_config, "architectures"), "architectures cannot be empty when load weight!"
    architectures = getattr(model_config, "architectures", [])
    local_cache_path = os.path.expanduser(local_cache_path)

    if config.model.path.startswith("hdfs:"):
        from verl.utils.fs import copy_to_local
        print(f'start download from {config.model.path}')
        local_model_path = copy_to_local(src=config.model.path, cache_dir=local_cache_path)
        print('finish download')
    else:
        print(f"load from local dir {config.model.path}")
        local_model_path = config.model.path

    # TODO: to find a better way to load mistral7b-rm lm_head
    if 'mistral7b-rm' in config.model.path:
        model = MistralForSequenceClassification.from_pretrained(local_model_path)  # use score head instead of lm_head
        state_dict = model.state_dict()
        state_dict['lm_head.weight'] = state_dict['score.weight']
        state_dict['model.embed_tokens.weight'] = state_dict[
            'model.embed_tokens.weight'][:32000]  # workaround, 32001 -> 32000
        is_value_model = True
    else:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
        model = AutoModelForCausalLM.from_pretrained(local_model_path)
        state_dict = model.state_dict()

    from verl.models.mcore.loader import load_state_dict_to_megatron_gptmodel
    load_state_dict_to_megatron_gptmodel(state_dict=state_dict,
                                         wrapped_models=parallel_model,
                                         config=model.config,
                                         params_dtype=params_dtype,
                                         is_value_model=is_value_model)
    del state_dict, model


def load_mcore_dist_weights(parallel_model, dist_weight_path, is_value_model=False):
    from megatron.core import dist_checkpointing
    from megatron.core.dist_checkpointing.serialization import StrictHandling

    # strict = StrictHandling.IGNORE_ALL if is_value_model else StrictHandling.ASSUME_OK_UNEXPECTED
    strict = StrictHandling.ASSUME_OK_UNEXPECTED
    for model in parallel_model:
        ssd = model.module.module.sharded_state_dict()
        if is_value_model:
            for k in list(ssd.keys()):
                if "output_layer" in k:
                    ssd.pop(k)
        dist_checkpointing.load(ssd, dist_weight_path, strict=strict)

    return


def get_parallel_gptmodel_from_config(tfconfig,
                                      hf_config,
                                      pre_process=None,
                                      post_process=None,
                                      share_embeddings_and_output_weights=False,
                                      value=False):
    from megatron.core.models.gpt.gpt_model import GPTModel
    from megatron.core.models.gpt.gpt_layer_specs import get_gpt_decoder_block_spec
    from megatron.core import parallel_state as mpu
    from megatron.core import tensor_parallel
    use_te = True
    assert tfconfig.normalization == "RMSNorm", 'only RMSNorm is supported for now'
    transformer_layer_spec = get_gpt_decoder_block_spec(tfconfig, use_transformer_engine=use_te)
    rope_scaling_args = {}
    if hf_config.rope_scaling is not None:
        assert hf_config.rope_scaling['type'] == 'linear', "only linear scaling is supported for now"
        rope_scaling_args['seq_len_interpolation_factor'] = hf_config.rope_scaling['factor']
    parallel_model = GPTModel(config=tfconfig,
                              transformer_layer_spec=transformer_layer_spec,
                              vocab_size=hf_config.vocab_size,
                              max_sequence_length=hf_config.max_position_embeddings,
                              pre_process=pre_process,
                              post_process=post_process,
                              share_embeddings_and_output_weights=share_embeddings_and_output_weights,
                              position_embedding_type='rope',
                              rotary_base=hf_config.rope_theta,
                              **rope_scaling_args)
    # # for layer in parallel_model.decoder.layers: layer.self_attention.core_attention.flash_attention.softmax_scale = None
    if post_process and value:
        from verl.models.llama.megatron.layers.parallel_linear import LinearForLastLayer
        parallel_model.output_layer = LinearForLastLayer(input_size=tfconfig.hidden_size,
                                                         output_size=1,
                                                         config=tfconfig)
    return parallel_model