multiturn.py 4.39 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2024 Bytedance Ltd. and/or its affiliates

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Create a simple multi-turn dataset for testing
"""

import os
import pandas as pd
import argparse


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--local_dir', default='~/data/multiturn')
    parser.add_argument('--hdfs_dir', default=None)
    args = parser.parse_args()

    # Create example conversations
    conversations = []

    # Conversation 1
    conversations.append({
        "messages": [{
            "role": "system",
            "content": "You are a helpful assistant."
        }, {
            "role": "user",
            "content": "What is the capital of France?"
        }, {
            "role": "assistant",
            "content": "The capital of France is Paris."
        }, {
            "role": "user",
            "content": "And what about Germany?"
        }, {
            "role": "assistant",
            "content": "The capital of Germany is Berlin."
        }]
    })

    # Conversation 2
    conversations.append({
        "messages": [{
            "role": "system",
            "content": "You are a helpful assistant."
        }, {
            "role": "user",
            "content": "Can you explain quantum computing?"
        }, {
            "role":
                "assistant",
            "content":
                "Quantum computing is a type of computing that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data."
        }, {
            "role": "user",
            "content": "How is it different from classical computing?"
        }, {
            "role":
                "assistant",
            "content":
                "Classical computing uses bits that are either 0 or 1, while quantum computing uses quantum bits or qubits that can exist in multiple states simultaneously due to superposition."
        }]
    })

    # Conversation 3
    conversations.append({
        "messages": [{
            "role": "system",
            "content": "You are a helpful assistant."
        }, {
            "role": "user",
            "content": "Write a simple Python function to calculate factorial."
        }, {
            "role":
                "assistant",
            "content":
                "```python\ndef factorial(n):\n    if n == 0 or n == 1:\n        return 1\n    else:\n        return n * factorial(n-1)\n```\n\nThis is a recursive function to calculate the factorial of a number."
        }, {
            "role": "user",
            "content": "Can you make it iterative instead?"
        }, {
            "role":
                "assistant",
            "content":
                "```python\ndef factorial(n):\n    result = 1\n    for i in range(1, n+1):\n        result *= i\n    return result\n```\n\nThis is an iterative version of the factorial function."
        }]
    })

    # Create train and test datasets
    train_data = conversations[:2]  # First 2 conversations for training
    test_data = conversations[2:]  # Last conversation for testing

    # Create output directory
    local_dir = os.path.expanduser(args.local_dir)
    os.makedirs(local_dir, exist_ok=True)

    # Save to parquet files
    train_df = pd.DataFrame(train_data)
    test_df = pd.DataFrame(test_data)

    train_df.to_parquet(os.path.join(local_dir, 'train.parquet'))
    test_df.to_parquet(os.path.join(local_dir, 'test.parquet'))

    # Handle HDFS if specified
    if args.hdfs_dir is not None:
        try:
            from verl.utils.hdfs_io import copy, makedirs
            makedirs(args.hdfs_dir)
            copy(src=local_dir, dst=args.hdfs_dir)
        except ImportError:
            print("Warning: HDFS support not available. Skipping HDFS copy.")

    # Print statistics
    print(f"Train dataset size: {len(train_df)}")
    print(f"Test dataset size: {len(test_df)}")
    print(f"Data saved to {local_dir}")


if __name__ == '__main__':
    main()