parallel_linear.py 3.49 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023 The vLLM team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/linear.py

from typing import Optional, Tuple

from megatron.core import tensor_parallel


class QKVParallelLinear(tensor_parallel.ColumnParallelLinear):

    def __init__(self,
                 input_size,
                 num_heads,
                 num_key_value_heads,
                 head_dim,
                 *,
                 bias=True,
                 gather_output=True,
                 skip_bias_add=False,
                 **kwargs):
        # Keep input parameters, and already restrict the head numbers
        self.input_size = input_size
        self.q_output_size = num_heads * head_dim
        self.kv_output_size = num_key_value_heads * head_dim
        self.head_dim = head_dim
        self.gather_output = gather_output
        self.skip_bias_add = skip_bias_add

        input_size = self.input_size
        output_size = (num_heads + 2 * num_key_value_heads) * self.head_dim

        super().__init__(input_size=input_size,
                         output_size=output_size,
                         bias=bias,
                         gather_output=gather_output,
                         skip_bias_add=skip_bias_add,
                         **kwargs)


class MergedColumnParallelLinear(tensor_parallel.ColumnParallelLinear):

    def __init__(self,
                 input_size,
                 gate_ouput_size,
                 up_output_size,
                 *,
                 bias=True,
                 gather_output=True,
                 skip_bias_add=False,
                 **kwargs):
        # Keep input parameters, and already restrict the head numbers
        self.input_size = input_size
        self.output_size = gate_ouput_size + up_output_size
        self.gather_output = gather_output
        self.skip_bias_add = skip_bias_add

        super().__init__(input_size=self.input_size,
                         output_size=self.output_size,
                         bias=bias,
                         gather_output=gather_output,
                         skip_bias_add=skip_bias_add,
                         **kwargs)


import torch


class LinearForLastLayer(torch.nn.Linear):

    def __init__(
        self,
        input_size,
        output_size,
        *,
        config,
        bias=True,
    ):
        super().__init__(in_features=input_size, out_features=output_size, bias=bias)
        self.sequence_parallel = config.sequence_parallel
        if self.sequence_parallel:
            setattr(self.weight, 'sequence_parallel', True)

    def forward(
        self,
        input_,
        weight=None,
        runtime_gather_output=None,
    ):
        logits = super().forward(input_)
        logits = logits.float()
        if self.sequence_parallel:
            logits = tensor_parallel.gather_from_sequence_parallel_region(logits, tensor_parallel_output_grad=False)
        return logits, None