test_tensor_dict_utilities.py 12.1 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import pytest
import torch
from tensordict import TensorDict

from verl.protocol import union_tensor_dict, union_numpy_dict

from verl import DataProto
import numpy as np


def test_union_tensor_dict():
    obs = torch.randn(100, 10)

    data1 = TensorDict({'obs': obs, 'act': torch.randn(100, 3)}, batch_size=[100])
    data2 = TensorDict({'obs': obs, 'next_obs': torch.randn(100, 10), 'rew': torch.randn(100)}, batch_size=[100])

    data_with_copied_obs = TensorDict({
        'obs': obs.clone(),
        'next_obs': torch.randn(100, 10),
        'rew': torch.randn(100)
    },
                                      batch_size=[100])

    data = union_tensor_dict(data1, data2)
    with pytest.raises(AssertionError):
        data = union_tensor_dict(data1, data_with_copied_obs)

    data = np.random.random(100)
    data2 = [float('nan') for _ in range(99)]
    data2.append('nan')
    data2 = np.array(data2, dtype=object)
    data3 = np.tile(data2, (2, 1))
    a = {'a': data, 'b': data2, 'c': data3}
    b = {'a': data, 'b': data2, 'c': data3}
    b_ = {'a': np.random.random(100)}
    union_numpy_dict(a, b)
    with pytest.raises(AssertionError):
        union_numpy_dict(a, b_)


def test_tensor_dict_constructor():
    obs = torch.randn(100, 10)
    act = torch.randn(100, 10, 3)
    data = DataProto.from_dict(tensors={'obs': obs, 'act': act})

    assert data.batch.batch_size == torch.Size([100])

    with pytest.raises(AssertionError):
        data = DataProto.from_dict(tensors={'obs': obs, 'act': act}, num_batch_dims=2)

    with pytest.raises(AssertionError):
        data = DataProto.from_dict(tensors={'obs': obs, 'act': act}, num_batch_dims=3)


def test_tensor_dict_make_iterator():
    obs = torch.randn(100, 10)
    labels = [random.choice(['abc', 'cde']) for _ in range(100)]
    dataset = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels})

    data_iter_1 = dataset.make_iterator(mini_batch_size=10, epochs=2, seed=1)
    data_list_1 = []
    for data in data_iter_1:
        data_list_1.append(data)

    data_iter_2 = dataset.make_iterator(mini_batch_size=10, epochs=2, seed=1)
    data_list_2 = []
    for data in data_iter_2:
        data_list_2.append(data)

    for data1, data2 in zip(data_list_1, data_list_2):
        assert isinstance(data1, DataProto)
        assert isinstance(data2, DataProto)
        result = torch.all(torch.eq(data1.batch['obs'], data2.batch['obs']))
        if not result.item():
            print(data1.batch['obs'])
            print(data2.batch['obs'])
            assert False
        non_tensor_result = np.all(np.equal(data1.non_tensor_batch['labels'], data2.non_tensor_batch['labels']))
        if not non_tensor_result.item():
            print(data1.non_tensor_batch['labels'])
            print(data2.non_tensor_batch['labels'])


def test_reorder():
    obs = torch.tensor([1, 2, 3, 4, 5, 6])
    labels = ['a', 'b', 'c', 'd', 'e', 'f']
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'name': 'abdce'})
    data.reorder(torch.tensor([3, 4, 2, 0, 1, 5]))

    assert torch.all(torch.eq(data.batch['obs'], torch.tensor([4, 5, 3, 1, 2, 6])))
    assert np.all(data.non_tensor_batch['labels'] == np.array(['d', 'e', 'c', 'a', 'b', 'f']))
    assert data.meta_info == {'name': 'abdce'}


def test_chunk_concat():
    obs = torch.tensor([1, 2, 3, 4, 5, 6])
    labels = ['a', 'b', 'c', 'd', 'e', 'f']
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'name': 'abdce'})

    with pytest.raises(AssertionError):
        data.chunk(5)

    data_split = data.chunk(2)
    assert len(data_split) == 2
    assert torch.all(torch.eq(data_split[0].batch['obs'], torch.tensor([1, 2, 3])))
    assert np.all(data_split[0].non_tensor_batch['labels'] == np.array(['a', 'b', 'c']))
    assert data_split[0].meta_info == {'name': 'abdce'}

    assert torch.all(torch.eq(data_split[1].batch['obs'], torch.tensor([4, 5, 6])))
    assert np.all(data_split[1].non_tensor_batch['labels'] == np.array(['d', 'e', 'f']))
    assert data_split[1].meta_info == {'name': 'abdce'}

    concat_data = DataProto.concat(data_split)
    assert torch.all(torch.eq(concat_data.batch['obs'], data.batch['obs']))
    assert np.all(concat_data.non_tensor_batch['labels'] == data.non_tensor_batch['labels'])
    assert concat_data.meta_info == data.meta_info


def test_pop():
    obs = torch.randn(100, 10)
    act = torch.randn(100, 3)
    dataset = DataProto.from_dict({'obs': obs, 'act': act}, meta_info={'2': 2, '1': 1})
    poped_dataset = dataset.pop(batch_keys=['obs'], meta_info_keys=['2'])

    assert poped_dataset.batch.keys() == {'obs'}
    assert poped_dataset.meta_info.keys() == {'2'}

    assert dataset.batch.keys() == {'act'}
    assert dataset.meta_info.keys() == {'1'}


def test_repeat():
    # Create a DataProto object with some batch and non-tensor data
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ['a', 'b', 'c']
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'info': 'test_info'})

    # Test interleave=True
    repeated_data_interleave = data.repeat(repeat_times=2, interleave=True)
    expected_obs_interleave = torch.tensor([[1, 2], [1, 2], [3, 4], [3, 4], [5, 6], [5, 6]])
    expected_labels_interleave = ['a', 'a', 'b', 'b', 'c', 'c']

    assert torch.all(torch.eq(repeated_data_interleave.batch['obs'], expected_obs_interleave))
    assert (repeated_data_interleave.non_tensor_batch['labels'] == expected_labels_interleave).all()
    assert repeated_data_interleave.meta_info == {'info': 'test_info'}

    # Test interleave=False
    repeated_data_no_interleave = data.repeat(repeat_times=2, interleave=False)
    expected_obs_no_interleave = torch.tensor([[1, 2], [3, 4], [5, 6], [1, 2], [3, 4], [5, 6]])
    expected_labels_no_interleave = ['a', 'b', 'c', 'a', 'b', 'c']

    assert torch.all(torch.eq(repeated_data_no_interleave.batch['obs'], expected_obs_no_interleave))
    assert (repeated_data_no_interleave.non_tensor_batch['labels'] == expected_labels_no_interleave).all()
    assert repeated_data_no_interleave.meta_info == {'info': 'test_info'}


def test_dataproto_pad_unpad():
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ['a', 'b', 'c']
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'info': 'test_info'})

    from verl.protocol import pad_dataproto_to_divisor, unpad_dataproto

    padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=2)
    assert pad_size == 1

    expected_obs = torch.tensor([[1, 2], [3, 4], [5, 6], [1, 2]])
    expected_labels = ['a', 'b', 'c', 'a']

    assert torch.all(torch.eq(padded_data.batch['obs'], expected_obs))
    assert (padded_data.non_tensor_batch['labels'] == expected_labels).all()
    assert padded_data.meta_info == {'info': 'test_info'}

    unpadd_data = unpad_dataproto(padded_data, pad_size=pad_size)
    assert torch.all(torch.eq(unpadd_data.batch['obs'], obs))
    assert (unpadd_data.non_tensor_batch['labels'] == labels).all()
    assert unpadd_data.meta_info == {'info': 'test_info'}

    padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=3)
    assert pad_size == 0

    expected_obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    expected_labels = ['a', 'b', 'c']

    assert torch.all(torch.eq(padded_data.batch['obs'], expected_obs))
    assert (padded_data.non_tensor_batch['labels'] == expected_labels).all()
    assert padded_data.meta_info == {'info': 'test_info'}

    unpadd_data = unpad_dataproto(padded_data, pad_size=pad_size)
    assert torch.all(torch.eq(unpadd_data.batch['obs'], obs))
    assert (unpadd_data.non_tensor_batch['labels'] == labels).all()
    assert unpadd_data.meta_info == {'info': 'test_info'}

    padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=7)
    assert pad_size == 4

    expected_obs = torch.tensor([[1, 2], [3, 4], [5, 6], [1, 2], [3, 4], [5, 6], [1, 2]])
    expected_labels = ['a', 'b', 'c', 'a', 'b', 'c', 'a']
    assert torch.all(torch.eq(padded_data.batch['obs'], expected_obs))
    assert (padded_data.non_tensor_batch['labels'] == expected_labels).all()
    assert padded_data.meta_info == {'info': 'test_info'}

    unpadd_data = unpad_dataproto(padded_data, pad_size=pad_size)
    assert torch.all(torch.eq(unpadd_data.batch['obs'], obs))
    assert (unpadd_data.non_tensor_batch['labels'] == labels).all()
    assert unpadd_data.meta_info == {'info': 'test_info'}


def test_dataproto_fold_unfold():
    from verl.protocol import fold_batch_dim, unfold_batch_dim, DataProto

    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ['a', 'b', 'c']
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'info': 'test_info'})

    data1 = data.repeat(repeat_times=2, interleave=True)

    data2 = fold_batch_dim(data1, new_batch_size=3)

    torch.testing.assert_close(data2.batch['obs'], torch.tensor([[[1, 2], [1, 2]], [[3, 4], [3, 4]], [[5, 6], [5, 6]]]))
    assert (data2.non_tensor_batch['labels'] == [['a', 'a'], ['b', 'b'], ['c', 'c']]).all()

    data2.reorder(indices=torch.tensor([1, 2, 0]))

    data3 = unfold_batch_dim(data2, batch_dims=2)

    torch.testing.assert_close(data3.batch['obs'], torch.tensor([[3, 4], [3, 4], [5, 6], [5, 6], [1, 2], [1, 2]]))
    assert (data3.non_tensor_batch['labels'] == ['b', 'b', 'c', 'c', 'a', 'a']).all()
    assert data3.meta_info == {'info': 'test_info'}


def test_torch_save_data_proto():

    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ['a', 'b', 'c']
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'info': 'test_info'})
    data.save_to_disk('test_data.pt')
    loaded_data = DataProto.load_from_disk('test_data.pt')

    assert torch.all(torch.eq(loaded_data.batch['obs'], data.batch['obs']))
    assert (loaded_data.non_tensor_batch['labels'] == data.non_tensor_batch['labels']).all()
    assert loaded_data.meta_info == data.meta_info

    import os
    os.remove('test_data.pt')


def test_len():
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = np.array(['a', 'b', 'c'], dtype=object)
    data = DataProto.from_dict(tensors={'obs': obs}, non_tensors={'labels': labels}, meta_info={'info': 'test_info'})

    assert len(data) == 3

    data = DataProto(batch=None, non_tensor_batch={'labels': labels}, meta_info={'info': 'test_info'})

    assert len(data) == 3

    data = DataProto(batch=None, non_tensor_batch={}, meta_info={'info': 'test_info'})

    assert len(data) == 0

    data = DataProto(batch=None, non_tensor_batch=None, meta_info={'info': 'test_info'})

    assert len(data) == 0


def test_seqlen_balancing():
    from verl.utils.seqlen_balancing import rearrange_micro_batches, get_reverse_idx
    input_ids = torch.randint(low=0, high=10, size=(20, 100))
    from verl.utils.model import create_random_mask
    attention_mask = create_random_mask(input_ids=input_ids,
                                        max_ratio_of_left_padding=0.1,
                                        max_ratio_of_valid_token=0.9,
                                        min_ratio_of_valid_token=0.5)
    data = {'input_ids': input_ids, 'attention_mask': attention_mask}
    dataproto = DataProto.from_single_dict(data)
    micro_batches, micro_bsz_idx_lst = rearrange_micro_batches(dataproto.batch, max_token_len=300)
    batch = torch.cat(micro_batches)
    micro_bsz_idx = []
    for idx in micro_bsz_idx_lst:
        micro_bsz_idx.extend(idx)
    reverse_idx_map = get_reverse_idx(micro_bsz_idx)
    reverse_idx_map = torch.tensor(reverse_idx_map)
    new_batch = batch[reverse_idx_map]
    torch.testing.assert_close(new_batch, dataproto.batch)