main_trainer.py 5.68 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Using FSDPTrainer
"""
import os
import hydra
import ray
import torch
from transformers import PreTrainedTokenizer, AutoTokenizer

from verl import DataProto
from verl.trainer.ppo.ray_trainer import RayPPOTrainer
from verl.utils.fs import copy_to_local
from tests.e2e.envs.digit_completion import CharTokenizer


def make_reward_function(tokenizer, num_examine):

    def arithmetic_sequence_reward_function(data: DataProto, return_dict: bool = False):
        from tests.e2e.envs.digit_completion.task import compute_reward
        reward_tensor = torch.zeros_like(data.batch['responses'], dtype=torch.float32)

        for i in range(data.batch.batch_size[0]):
            data_item = data[i]  # DataProtoItem

            prompt_ids = data_item.batch['prompts']

            prompt_length = prompt_ids.shape[-1]

            # extract raw prompt
            valid_prompt_length = data_item.batch['attention_mask'][:prompt_length].sum()
            valid_prompt_ids = prompt_ids[-valid_prompt_length:]

            # extract response
            response_ids = data_item.batch['responses']
            response_length = response_ids.shape[-1]
            response_mask = data.batch['attention_mask'][i][-response_length:]
            valid_response_length = data_item.batch['attention_mask'][prompt_length:].sum()
            valid_response_ids = response_ids[:valid_response_length]

            # decode
            prompt = tokenizer.decode(valid_prompt_ids)
            response = tokenizer.decode(valid_response_ids)
            # remove bos and eos
            prompt = prompt.replace(tokenizer.sep_token, '')
            response = response.replace(tokenizer.eos_token, '')
            if i < num_examine:
                print(prompt, response)

            reward_output = compute_reward(prompt, response)
            dense_reward = reward_output[0].tolist()
            ground_truth_response = reward_output[1]['ground_truth_response']
            if len(dense_reward) > 0:
                last_reward = dense_reward[-1]
            else:
                if len(ground_truth_response) == 0:
                    last_reward = 1
                else:
                    last_reward = 0

            # pad to response_length
            for _ in range(reward_tensor.shape[-1] - len(dense_reward)):
                dense_reward.append(last_reward)

            dense_reward = torch.as_tensor(dense_reward, dtype=torch.float32, device=reward_tensor.device)
            reward_tensor[i] = dense_reward * response_mask

        if return_dict:
            return {"reward_tensor": reward_tensor}
        else:
            return reward_tensor

    return arithmetic_sequence_reward_function


@hydra.main(config_path='../../../../verl/trainer/config', config_name='ppo_trainer', version_base=None)
def main(config):
    ray.init(
        runtime_env={
            'env_vars': {
                'MEGATRON_USE_CUDA_TIMER': '0',
                'MEGATRON_START_PROCESS_TIMER': 'False',
                'TOKENIZERS_PARALLELISM': 'true',
                'NCCL_DEBUG': 'WARN'
            }
        })

    # print initial config
    from pprint import pprint
    from omegaconf import OmegaConf
    pprint(OmegaConf.to_container(config, resolve=True))  # resolve=True will eval symbol values

    # print the config
    # print initial config
    print('Config after normalizing batch_size')
    pprint(OmegaConf.to_container(config, resolve=True))  # resolve=True will eval symbol values

    # download the checkpoint from hdfs
    local_path = copy_to_local(config.actor_rollout_ref.model.path)
    local_path = os.path.expanduser(local_path)
    # instantiate tokenizern
    tokenizer = AutoTokenizer.from_pretrained(local_path)
    print(f'Tokenizer vocab_size: {tokenizer.vocab_size}')

    # define worker classes
    from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker
    from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role

    role_worker_mapping = {
        Role.ActorRollout: ray.remote(ActorRolloutRefWorker),
        Role.Critic: ray.remote(CriticWorker),
    }

    global_pool_id = 'global_pool'
    resource_pool_spec = {
        global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
    }
    mapping = {
        Role.ActorRollout: global_pool_id,
        Role.Critic: global_pool_id,
    }

    # use reward model
    if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss:
        role_worker_mapping[Role.RefPolicy] = ray.remote(ActorRolloutRefWorker)
        mapping[Role.RefPolicy] = global_pool_id

    reward_fn = make_reward_function(tokenizer=tokenizer, num_examine=1)

    resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

    trainer = RayPPOTrainer(config=config,
                            tokenizer=tokenizer,
                            role_worker_mapping=role_worker_mapping,
                            resource_pool_manager=resource_pool_manager,
                            reward_fn=reward_fn,
                            val_reward_fn=reward_fn)
    trainer.init_workers()
    trainer.fit()


if __name__ == '__main__':
    main()