prime_ray_trainer.py 24.7 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# Copyright 2024 PRIME team and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
FSDP PPO Trainer with Ray-based single controller.
This trainer supports model-agonistic model initialization with huggingface
"""

import os
import statistics
import uuid
from copy import deepcopy
from pprint import pprint

import numpy as np
import torch
from omegaconf import OmegaConf, open_dict

from verl import DataProto
from verl.single_controller.ray import RayWorkerGroup
from verl.trainer.ppo.ray_trainer import RayPPOTrainer
from verl.trainer.ppo.ray_trainer import Role, WorkerType, ResourcePoolManager, reduce_metrics, _timer
from verl.trainer.ppo.metric_utils import _compute_response_info
from verl.utils.checkpoint.checkpoint_manager import find_latest_ckpt_path
from verl.utils.dataset.rl_dataset import RLHFDataset, collate_fn
from . import prime_core_algos


def compute_advantage(data: DataProto, adv_estimator, config):
    if adv_estimator == 'rloo':
        responses = data.batch['responses']
        response_length = responses.size(-1)
        attention_mask = data.batch['attention_mask']
        response_mask = attention_mask[:, -response_length:]
        advantages, returns = prime_core_algos.compute_rloo_advantage_return(data, response_mask,
                                                                             config.actor_rollout_ref.rollout.n, config)
        data.batch['advantages'] = advantages
        data.batch['returns'] = returns
    else:
        raise NotImplementedError
    return data


def compute_data_metrics(batch, use_critic=True):

    advantages = batch.batch['advantages']
    returns = batch.batch['returns']

    max_response_length = batch.batch['responses'].shape[-1]

    prompt_mask = batch.batch['attention_mask'][:, :-max_response_length].bool()
    response_mask = batch.batch['attention_mask'][:, -max_response_length:].bool()

    max_prompt_length = prompt_mask.size(-1)

    response_info = _compute_response_info(batch)
    prompt_length = response_info['prompt_length']
    response_length = response_info['response_length']

    valid_adv = torch.masked_select(advantages, response_mask)
    valid_returns = torch.masked_select(returns, response_mask)

    if use_critic:
        values = batch.batch['values']
        valid_values = torch.masked_select(values, response_mask)
        return_diff_var = torch.var(valid_returns - valid_values)
        return_var = torch.var(valid_returns)

    metrics = {
        # adv
        'critic/advantages/mean':
            torch.mean(valid_adv).detach().item(),
        'critic/advantages/max':
            torch.max(valid_adv).detach().item(),
        'critic/advantages/min':
            torch.min(valid_adv).detach().item(),
        # returns
        'critic/returns/mean':
            torch.mean(valid_returns).detach().item(),
        'critic/returns/max':
            torch.max(valid_returns).detach().item(),
        'critic/returns/min':
            torch.min(valid_returns).detach().item(),
        **({
            # values
            'critic/values/mean': torch.mean(valid_values).detach().item(),
            'critic/values/max': torch.max(valid_values).detach().item(),
            'critic/values/min': torch.min(valid_values).detach().item(),
            # vf explained var
            'critic/vf_explained_var': (1.0 - return_diff_var / (return_var + 1e-5)).detach().item(),
        } if use_critic else {}),

        # response length
        'response_length/mean':
            torch.mean(response_length).detach().item(),
        'response_length/max':
            torch.max(response_length).detach().item(),
        'response_length/min':
            torch.min(response_length).detach().item(),
        'response_length/clip_ratio':
            torch.mean(torch.eq(response_length, max_response_length).float()).detach().item(),
        # prompt length
        'prompt_length/mean':
            torch.mean(prompt_length).detach().item(),
        'prompt_length/max':
            torch.max(prompt_length).detach().item(),
        'prompt_length/min':
            torch.min(prompt_length).detach().item(),
        'prompt_length/clip_ratio':
            torch.mean(torch.eq(prompt_length, max_prompt_length).float()).detach().item(),
    }
    return metrics


def compute_timing_metrics(batch, timing_raw):
    response_info = _compute_response_info(batch)
    num_prompt_tokens = torch.sum(response_info['prompt_length']).item()
    num_response_tokens = torch.sum(response_info['response_length']).item()
    num_overall_tokens = num_prompt_tokens + num_response_tokens

    num_tokens_of_section = {
        'gen': num_response_tokens,
        **{
            name: num_overall_tokens for name in ['ref', 'values', 'adv', 'update_critic', 'update_actor']
        },
    }

    return {
        **{
            f'timing_s/{name}': value for name, value in timing_raw.items()
        },
        **{
            f'timing_per_token_ms/{name}': timing_raw[name] * 1000 / num_tokens_of_section[name] for name in set(num_tokens_of_section.keys(
            )) & set(timing_raw.keys())
        },
    }


class RayPRIMETrainer(RayPPOTrainer):
    """
    Note that this trainer runs on the driver process on a single CPU/GPU node.
    """

    # TODO: support each role have individual ray_worker_group_cls,
    # i.e., support different backend of different role
    def __init__(self,
                 config,
                 tokenizer,
                 role_worker_mapping: dict[Role, WorkerType],
                 resource_pool_manager: ResourcePoolManager,
                 ray_worker_group_cls: RayWorkerGroup = RayWorkerGroup,
                 reward_fn=None,
                 val_reward_fn=None):

        # assert torch.cuda.is_available(), 'cuda must be available on driver'

        super().__init__(config, tokenizer, role_worker_mapping, resource_pool_manager, ray_worker_group_cls, reward_fn,
                         val_reward_fn)

        self.use_critic = False

    def _validate_config(self):
        super()._validate_config()
        # TODO: Additional config checks can be added here
        config = self.config

    def _create_dataloader(self):
        from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
        # TODO: we have to make sure the batch size is divisible by the dp size
        self.train_dataset = RLHFDataset(data_files=self.config.data.train_files,
                                         tokenizer=self.tokenizer,
                                         config=self.config.data)
        # use sampler for better ckpt resume
        if self.config.data.shuffle:
            train_dataloader_generator = torch.Generator()
            train_dataloader_generator.manual_seed(self.config.data.get('seed', 1))
            sampler = RandomSampler(data_source=self.train_dataset, generator=train_dataloader_generator)
        else:
            sampler = SequentialSampler(data_source=self.train_dataset)

        self.train_dataloader = DataLoader(dataset=self.train_dataset,
                                           batch_size=int(self.config.data.train_batch_size *
                                                          self.config.data.oversample_factor),
                                           drop_last=True,
                                           collate_fn=collate_fn,
                                           sampler=sampler)

        self.val_dataset = RLHFDataset(data_files=self.config.data.val_files,
                                       tokenizer=self.tokenizer,
                                       config=self.config.data)
        self.val_dataloader = DataLoader(dataset=self.val_dataset,
                                         batch_size=len(self.val_dataset),
                                         shuffle=True,
                                         drop_last=True,
                                         collate_fn=collate_fn)

        assert len(self.train_dataloader) >= 1
        assert len(self.val_dataloader) >= 1

        print(f'Size of train dataloader: {len(self.train_dataloader)}')
        print(f'Size of val dataloader: {len(self.val_dataloader)}')

        # inject total_training_steps to actor/critic optim_config. This is hacky.
        total_training_steps = len(self.train_dataloader) * self.config.trainer.total_epochs

        if self.config.trainer.total_training_steps is not None:
            total_training_steps = self.config.trainer.total_training_steps

        self.total_training_steps = total_training_steps
        print(f'Total training steps: {self.total_training_steps}')

        OmegaConf.set_struct(self.config, True)
        with open_dict(self.config):
            self.config.actor_rollout_ref.actor.optim.total_training_steps = total_training_steps
            self.config.critic.optim.total_training_steps = total_training_steps

    def _save_checkpoint(self):
        # path: given_path + `/global_step_{global_steps}` + `/actor`
        local_global_step_folder = os.path.join(self.config.trainer.default_local_dir,
                                                f'global_step_{self.global_steps}')
        print(f'local_global_step_folder: {local_global_step_folder}')
        actor_local_path = os.path.join(local_global_step_folder, 'actor')

        actor_remote_path = None if self.config.trainer.default_hdfs_dir is None else os.path.join(
            self.config.trainer.default_hdfs_dir, f'global_step_{self.global_steps}', 'actor')
        self.actor_rollout_wg.save_checkpoint(actor_local_path,
                                              actor_remote_path,
                                              self.global_steps,
                                              remove_previous_ckpt=self.config.trainer.remove_previous_ckpt_in_save)

        if self.use_rm:
            reward_local_path = os.path.join(local_global_step_folder, 'reward')
            reward_remote_path = None if self.config.trainer.default_hdfs_dir is None else os.path.join(
                self.config.trainer.default_hdfs_dir, f'global_step_{self.global_steps}', 'reward')
            self.rm_wg.save_checkpoint(reward_local_path,
                                       reward_remote_path,
                                       self.global_steps,
                                       remove_previous_ckpt=self.config.trainer.remove_previous_ckpt_in_save)

        # save dataloader
        dataloader_local_path = os.path.join(local_global_step_folder, 'data.pt')
        import dill
        torch.save(self.train_dataloader, dataloader_local_path, pickle_module=dill)

        # latest checkpointed iteration tracker (for atomic usage)
        local_latest_checkpointed_iteration = os.path.join(self.config.trainer.default_local_dir,
                                                           'latest_checkpointed_iteration.txt')
        with open(local_latest_checkpointed_iteration, 'w') as f:
            f.write(str(self.global_steps))

    def _load_checkpoint(self):
        if self.config.trainer.resume_mode == 'disable':
            return 0

        # load from hdfs
        if self.config.trainer.default_hdfs_dir is not None:
            NotImplementedError('load from hdfs is not implemented yet')
        else:
            checkpoint_folder = self.config.trainer.default_local_dir  # TODO: check path
            if not os.path.isabs(checkpoint_folder):
                working_dir = os.getcwd()
                checkpoint_folder = os.path.join(working_dir, checkpoint_folder)
            global_step_folder = find_latest_ckpt_path(checkpoint_folder)  # None if no latest

        # find global_step_folder
        if self.config.trainer.resume_mode == 'auto':
            if global_step_folder is None:
                print('Training from scratch')
                return 0
        else:
            if self.config.trainer.resume_mode == "resume_path":
                assert isinstance(self.config.trainer.resume_from_path, str), "resume ckpt must be str type"
                assert 'global_step_' in self.config.trainer.resume_from_path, "resume ckpt must specify the global_steps"
                global_step_folder = self.config.trainer.resume_from_path
                if not os.path.isabs(global_step_folder):
                    working_dir = os.getcwd()
                    global_step_folder = os.path.join(working_dir, global_step_folder)
        print(f'Load from checkpoint folder: {global_step_folder}')
        # set global step
        self.global_steps = int(global_step_folder.split('global_step_')[-1])

        print(f'Setting global step to {self.global_steps}')
        print(f'Resuming from {global_step_folder}')

        actor_path = os.path.join(global_step_folder, 'actor')
        reward_path = os.path.join(global_step_folder, 'reward')
        # load actor
        self.actor_rollout_wg.load_checkpoint(actor_path,
                                              del_local_after_load=self.config.trainer.del_local_ckpt_after_load)
        # load rm
        if self.use_rm:
            self.rm_wg.load_checkpoint(reward_path, del_local_after_load=self.config.trainer.del_local_ckpt_after_load)

        # load dataloader,
        # TODO: from remote not implemented yet
        dataloader_local_path = os.path.join(global_step_folder, 'data.pt')
        self.train_dataloader = torch.load(dataloader_local_path)
        if isinstance(self.train_dataloader.dataset, RLHFDataset):
            self.train_dataloader.dataset.resume_dataset_state()

    def fit(self):
        """
        The training loop of PPO.
        The driver process only need to call the compute functions of the worker group through RPC to construct the PPO dataflow.
        The light-weight advantage computation is done on the driver process.
        """
        from verl.utils.tracking import Tracking
        from omegaconf import OmegaConf

        logger = Tracking(project_name=self.config.trainer.project_name,
                          experiment_name=self.config.trainer.experiment_name,
                          default_backend=self.config.trainer.logger,
                          config=OmegaConf.to_container(self.config, resolve=True))

        self.global_steps = 0

        # load checkpoint before doing anything
        self._load_checkpoint()

        # perform validation before training
        # currently, we only support validation using the reward_function.
        if self.val_reward_fn is not None and self.config.trainer.get('val_before_train', True):
            val_metrics = self._validate()
            pprint(f'Initial validation metrics: {val_metrics}')
            logger.log(data=val_metrics, step=self.global_steps)
            if self.config.trainer.get('val_only', False):
                return

        # we start from step 1
        self.global_steps += 1

        for epoch in range(self.config.trainer.total_epochs):
            for batch_dict in self.train_dataloader:
                metrics = {}
                timing_raw = {}

                batch: DataProto = DataProto.from_single_dict(batch_dict)

                # pop those keys for generation
                gen_batch = batch.pop(batch_keys=['input_ids', 'attention_mask', 'position_ids'])

                with _timer('step', timing_raw):
                    # generate a batch
                    with _timer('gen', timing_raw):
                        gen_batch_output = self.actor_rollout_wg.generate_sequences(gen_batch)

                    if self.config.algorithm.adv_estimator == 'remax':
                        with _timer('gen_max', timing_raw):
                            gen_baseline_batch = deepcopy(gen_batch)
                            gen_baseline_batch.meta_info['do_sample'] = False
                            gen_baseline_output = self.actor_rollout_wg.generate_sequences(gen_baseline_batch)

                            batch = batch.union(gen_baseline_output)
                            reward_baseline_tensor = self.reward_fn(batch)
                            reward_baseline_tensor = reward_baseline_tensor.sum(dim=-1)

                            batch.pop(batch_keys=list(gen_baseline_output.batch.keys()))

                            batch.batch['reward_baselines'] = reward_baseline_tensor

                            del gen_baseline_batch, gen_baseline_output

                    batch.non_tensor_batch['uid'] = np.array([str(uuid.uuid4()) for _ in range(len(batch.batch))],
                                                             dtype=object)
                    # repeat to align with repeated responses in rollout
                    batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True)
                    batch = batch.union(gen_batch_output)

                    # balance the number of valid tokens on each dp rank.
                    # Note that this breaks the order of data inside the batch.
                    # Please take care when you implement group based adv computation such as GRPO and rloo
                    # self._balance_batch(batch, metrics=metrics)

                    # compute global_valid tokens
                    batch.meta_info['global_token_num'] = torch.sum(batch.batch['attention_mask'], dim=-1).tolist()

                    # verify
                    with _timer('verify', timing_raw):
                        scores = self.reward_fn.verify(batch)
                        metrics['acc'] = statistics.mean(scores)

                    # filter the batch. 1/oversample_factor samples will be kept. If there is a filter, prompts passing it will be prioritized.

                    batch = self.filter_and_downsample(scores, batch)
                    batch.meta_info['n'] = self.config.actor_rollout_ref.rollout.n
                    n_samples = self.config.actor_rollout_ref.rollout.n

                    # recompute old_log_probs
                    with _timer('old_log_prob', timing_raw):
                        old_log_prob = self.actor_rollout_wg.compute_log_prob(batch)
                        batch = batch.union(old_log_prob)

                    if self.use_reference_policy:
                        # compute reference log_prob
                        with _timer('ref', timing_raw):
                            ref_log_prob = self.ref_policy_wg.compute_ref_log_prob(batch)
                            batch = batch.union(ref_log_prob)

                    with _timer('adv', timing_raw):

                        if self.use_rm:
                            update_style = self.config.reward_model.model.get('update', 'none')
                            if update_style == 'none':  # only run forward
                                reward_output = self.rm_wg.compute_rm_score(batch)
                            elif update_style == 'after':  # update and directly return the reward
                                reward_output = self.rm_wg.update_rm(batch)
                            elif update_style == 'before':  # update reward model, and then run forward
                                reward_output = self.rm_wg.update_rm(batch)
                                if 'metrics' in reward_output.meta_info.keys():
                                    reward_output_metrics = reduce_metrics(reward_output.meta_info['metrics'])
                                    metrics.update(reward_output_metrics)

                                reward_output = self.rm_wg.compute_rm_score(batch)
                            elif update_style == 'reverse':  # run forward to calculate statistics, then update reward model
                                reward_output = self.rm_wg.compute_rm_score(batch)
                                # broadcast q and acc tensor to each result
                                bc_td = DataProto.from_dict(
                                    tensors={
                                        'Q_bc':
                                            reward_output.batch['q'].sum(dim=-1).view(-1, n_samples).unsqueeze(
                                                1).expand(-1, n_samples, -1).reshape(-1, n_samples),
                                        'acc_bc':
                                            batch.batch['acc'].view(-1, n_samples).unsqueeze(1).expand(
                                                -1, n_samples, -1).reshape(-1, n_samples)
                                    })
                                batch = batch.union(bc_td)
                                reward_output = self.rm_wg.update_rm(batch)
                            else:
                                raise NotImplementedError
                            batch = batch.union(reward_output)
                            if 'metrics' in reward_output.meta_info.keys():
                                reward_output_metrics = reduce_metrics(reward_output.meta_info['metrics'])
                                metrics.update(reward_output_metrics)

                        # compute advantages, executed on the driver process
                        batch = compute_advantage(batch,
                                                  adv_estimator=self.config.algorithm.adv_estimator,
                                                  config=self.config)

                    # update actor
                    with _timer('update_actor', timing_raw):
                        actor_output = self.actor_rollout_wg.update_actor(batch)
                    actor_output_metrics = reduce_metrics(actor_output.meta_info['metrics'])
                    metrics.update(actor_output_metrics)

                    # validate
                    if self.val_reward_fn is not None and self.config.trainer.test_freq > 0 and \
                        self.global_steps % self.config.trainer.test_freq == 0:
                        with _timer('testing', timing_raw):
                            val_metrics: dict = self._validate()
                        metrics.update(val_metrics)

                    if self.config.trainer.save_freq > 0 and \
                            self.global_steps % self.config.trainer.save_freq == 0:
                        with _timer('save_checkpoint', timing_raw):
                            self._save_checkpoint()

                # collect metrics
                metrics.update(compute_data_metrics(batch=batch, use_critic=self.use_critic))
                metrics.update(compute_timing_metrics(batch=batch, timing_raw=timing_raw))

                # TODO: make a canonical logger that supports various backend
                logger.log(data=metrics, step=self.global_steps)

                self.global_steps += 1

                if self.global_steps >= self.total_training_steps:

                    # perform validation after training
                    if self.val_reward_fn is not None:
                        val_metrics = self._validate()
                        pprint(f'Final validation metrics: {val_metrics}')
                        logger.log(data=val_metrics, step=self.global_steps)
                    if self.config.trainer.save_freq > 0 and \
                            (self.global_steps - 1) % self.config.trainer.save_freq != 0:
                        with _timer('save_checkpoint', timing_raw):
                            self._save_checkpoint()
                    return

    def filter_and_downsample(self, scores, batch: DataProto):
        """
        downsample the batch according to oversample_factor
        samples passing the filters will be prioritized
        """
        n_samples = int(self.config.actor_rollout_ref.rollout.n)
        reward_matrix = torch.tensor(scores).reshape(-1, n_samples)

        filter_mask = torch.ones((reward_matrix.shape[0]), dtype=torch.bool)

        if self.config.data.filter_accuracy:
            acc_tensor = torch.mean(reward_matrix, dim=-1)
            filter_mask[(acc_tensor > self.config.data.accuracy_upper_bound) |
                        (acc_tensor < self.config.data.accuracy_lower_bound)] = False

        if self.config.data.filter_truncate:
            length_matrix = batch.batch['attention_mask'][:, -batch.batch['responses'].shape[-1]:].sum(dim=-1).reshape(
                -1, n_samples)
            length_tensor = torch.max(length_matrix, dim=-1)[0]
            filter_mask[length_tensor >= self.config.data.max_response_length - 1] = False

        reorder_index = torch.argsort(filter_mask, descending=True)
        reorder_index = (reorder_index.unsqueeze(-1) * n_samples + torch.arange(0, n_samples).unsqueeze(0)).view(-1)
        batch.reorder(reorder_index[:int(len(batch) //
                                         self.config.data.oversample_factor)])  # this operation is inplace

        return batch