prime_fsdp_workers.py 17.2 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright 2024 PRIME team and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
import os
import warnings

import torch
import torch.distributed
from torch.distributed.device_mesh import init_device_mesh
import verl.utils.torch_functional as verl_F
from omegaconf import DictConfig, open_dict
from verl import DataProto
from verl.single_controller.base import Worker
from verl.single_controller.base.decorator import register, Dispatch
from verl.utils import hf_tokenizer
from verl.utils.debug import log_gpu_memory_usage
from verl.utils.fs import copy_local_path_from_hdfs
from verl.utils.fsdp_utils import get_fsdp_wrap_policy, init_fn, get_init_weight_context_manager
from verl.utils.fsdp_utils import offload_fsdp_optimizer, offload_fsdp_model_to_cpu, load_fsdp_optimizer, \
    load_fsdp_model_to_gpu
from verl.utils.import_utils import import_external_libs
from verl.utils.model import compute_position_id_with_mask
from verl.utils.flops_counter import FlopsCounter
from verl.utils.checkpoint.fsdp_checkpoint_manager import FSDPCheckpointManager
from verl.workers.sharding_manager.fsdp_ulysses import FSDPUlyssesShardingManager

from codetiming import Timer
from verl.workers.fsdp_workers import create_device_mesh, get_sharding_strategy
from .prime_core_algos import compute_dpo_accuracy, compute_dpo_abs_accuracy

logger = logging.getLogger(__file__)
logger.setLevel(os.getenv('VERL_PPO_LOGGING_LEVEL', 'WARN'))


class PRIMERewardModelWorker(Worker):

    def __init__(self, config):
        super().__init__()
        import torch.distributed
        if not torch.distributed.is_initialized():
            torch.distributed.init_process_group(backend="nccl")
        self.config = config

        # build device mesh for Ulysses Sequence Parallel
        world_size = torch.distributed.get_world_size()
        from torch.distributed.device_mesh import init_device_mesh

        fsdp_size = self.config.model.fsdp_config.fsdp_size
        self.device_mesh = create_device_mesh(world_size=world_size, fsdp_size=fsdp_size)

        self.ulysses_device_mesh = None
        self.ulysses_sequence_parallel_size = self.config.get('ulysses_sequence_parallel_size', 1)
        dp = world_size // self.ulysses_sequence_parallel_size
        if self.ulysses_sequence_parallel_size > 1:
            self.ulysses_device_mesh = init_device_mesh('cuda',
                                                        mesh_shape=(dp, self.ulysses_sequence_parallel_size),
                                                        mesh_dim_names=['dp', 'sp'])

        self.ulysses_sharding_manager = FSDPUlyssesShardingManager(self.ulysses_device_mesh)

        # set FSDP offload params
        self._is_offload_param = self.config.model.fsdp_config.param_offload
        self._is_offload_optimizer = self.config.model.fsdp_config.optimizer_offload

        # normalize config
        self.config.mini_batch_size //= (torch.distributed.get_world_size() // self.ulysses_sequence_parallel_size)
        if self.config.micro_batch_size is not None:
            self.config.micro_batch_size //= (torch.distributed.get_world_size() // self.ulysses_sequence_parallel_size)
            self.config.micro_batch_size_per_gpu = self.config.micro_batch_size
            assert self.config.mini_batch_size % self.config.micro_batch_size_per_gpu == 0

    def _build_reward_ref_model_optimizer(self, config):
        # the following line is necessary
        from verl.utils.model import LambdaLayer, print_model_size, squeeze
        from verl.utils.torch_dtypes import PrecisionType
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy, MixedPrecision
        from torch import optim

        local_path = copy_local_path_from_hdfs(config.model.path)

        tokenizer_path = copy_local_path_from_hdfs(config.model.tokenizer_path)
        self.tokenizer = hf_tokenizer(tokenizer_path, trust_remote_code=config.model.get('trust_remote_code', False))

        from omegaconf import OmegaConf
        override_config = OmegaConf.to_container(self.config.model.get('override_config', OmegaConf.create()))
        override_config_kwargs = {
            'bos_token_id': self.tokenizer.bos_token_id,
            'eos_token_id': self.tokenizer.eos_token_id,
            'pad_token_id': self.tokenizer.pad_token_id,
        }
        override_config_kwargs.update(override_config)
        if self.rank == 0:
            print(f'Reward model overriding config {override_config_kwargs}')

        torch_dtype = self.config.model.fsdp_config.get('model_dtype', 'fp32')
        torch_dtype = PrecisionType.to_dtype(torch_dtype)

        from transformers import AutoConfig, AutoModelForCausalLM
        from torch import nn

        trust_remote_code = False
        reward_model_config = AutoConfig.from_pretrained(local_path, trust_remote_code=trust_remote_code)
        reward_model_config.num_labels = 1

        init_context = get_init_weight_context_manager(use_meta_tensor=not reward_model_config.tie_word_embeddings)
        with init_context(), warnings.catch_warnings():
            warnings.simplefilter("ignore")
            setattr(reward_model_config, 'classifier_dropout', 0.)
            setattr(reward_model_config, 'hidden_dropout', '0')
            reward_module = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=local_path,
                                                                 torch_dtype=torch_dtype,
                                                                 config=reward_model_config,
                                                                 attn_implementation='flash_attention_2',
                                                                 trust_remote_code=trust_remote_code)

            if config.model.get('use_remove_padding', False) or self.ulysses_sequence_parallel_size > 1:
                from verl.models.transformers.monkey_patch import apply_monkey_patch
                apply_monkey_patch(model=reward_module, ulysses_sp_size=self.ulysses_sequence_parallel_size)

            # some parameters may not in torch_dtype
            reward_module.to(torch_dtype)

            if config.model.get('enable_gradient_checkpointing', False):
                reward_module.gradient_checkpointing_enable(gradient_checkpointing_kwargs={'use_reentrant': False})
        if self.rank == 0:
            print_model_size(reward_module)

        self.reward_model_config = reward_model_config

        fsdp_config = self.config.model.fsdp_config
        mixed_precision_config = fsdp_config.get('mixed_precision', None)
        if mixed_precision_config is not None:
            param_dtype = PrecisionType.to_dtype(mixed_precision_config.get('param_dtype', 'bf16'))
            reduce_dtype = PrecisionType.to_dtype(mixed_precision_config.get('reduce_dtype', 'fp32'))
            buffer_dtype = PrecisionType.to_dtype(mixed_precision_config.get('buffer_dtype', 'fp32'))
        else:
            param_dtype = torch.bfloat16
            reduce_dtype = torch.float32
            buffer_dtype = torch.float32

        mixed_precision = MixedPrecision(param_dtype=param_dtype, reduce_dtype=reduce_dtype, buffer_dtype=buffer_dtype)

        auto_wrap_policy = get_fsdp_wrap_policy(module=reward_module, config=self.config.model.fsdp_config.wrap_policy)

        log_gpu_memory_usage('Before reward model FSDP', logger=None)

        fsdp_mesh = self.device_mesh
        sharding_strategy = get_sharding_strategy(fsdp_mesh)

        with init_context(), warnings.catch_warnings():
            warnings.simplefilter("ignore")
            setattr(reward_model_config, 'classifier_dropout', 0.)
            setattr(reward_model_config, 'hidden_dropout', '0')
            ref_module = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=copy_local_path_from_hdfs(
                config.model.ref_path),
                                                              torch_dtype=torch_dtype,
                                                              config=reward_model_config,
                                                              attn_implementation='flash_attention_2',
                                                              trust_remote_code=trust_remote_code)

            # some parameters may not in torch_dtype
            ref_module.to(torch_dtype)

        reward_module = FSDP(reward_module,
                             param_init_fn=init_fn,
                             use_orig_params=False,
                             auto_wrap_policy=auto_wrap_policy,
                             device_id=torch.cuda.current_device(),
                             sharding_strategy=sharding_strategy,
                             mixed_precision=mixed_precision,
                             sync_module_states=True,
                             forward_prefetch=False,
                             device_mesh=self.device_mesh,
                             cpu_offload=None)

        log_gpu_memory_usage('After reward FSDP', logger=None)

        ref_module = FSDP(ref_module,
                          param_init_fn=init_fn,
                          use_orig_params=False,
                          auto_wrap_policy=auto_wrap_policy,
                          device_id=torch.cuda.current_device(),
                          sharding_strategy=sharding_strategy,
                          mixed_precision=mixed_precision,
                          sync_module_states=True,
                          forward_prefetch=False,
                          device_mesh=self.device_mesh,
                          cpu_offload=None)

        reward_optimizer = optim.AdamW(reward_module.parameters(),
                                       lr=config.model.optim.lr,
                                       betas=config.model.optim.get('betas', (0.9, 0.999)),
                                       weight_decay=config.model.optim.get('weight_decay', 1e-2))

        total_steps = config.model.optim.get('total_training_steps', 0)
        num_warmup_steps = int(config.model.optim.get('lr_warmup_steps', -1))
        if num_warmup_steps < 0:
            num_warmup_steps_ratio = config.model.optim.get('lr_warmup_steps_ratio', 0.)
            num_warmup_steps = int(num_warmup_steps_ratio * total_steps)

        print(f'Total steps: {total_steps}, num_warmup_steps: {num_warmup_steps}')

        from verl.utils.torch_functional import get_constant_schedule_with_warmup
        reward_lr_scheduler = get_constant_schedule_with_warmup(optimizer=reward_optimizer,
                                                                num_warmup_steps=num_warmup_steps)

        return reward_module, ref_module, reward_optimizer, reward_lr_scheduler

    @register(dispatch_mode=Dispatch.ONE_TO_ALL)
    def init_model(self):
        # This is used to import external_lib into the huggingface systems
        import_external_libs(self.config.model.get('external_lib', None))

        from .prime_dp_rm import DataParallelPRIMERewardModel
        self.reward_module, self.ref_module, self.reward_optimizer, self.reward_lr_scheduler = self._build_reward_ref_model_optimizer(
            config=self.config)

        if self._is_offload_param:
            offload_fsdp_model_to_cpu(self.reward_module)
            offload_fsdp_model_to_cpu(self.ref_module)
        if self._is_offload_optimizer:
            offload_fsdp_optimizer(optimizer=self.reward_optimizer)

        self.rm = DataParallelPRIMERewardModel(config=self.config,
                                               reward_module=self.reward_module,
                                               ref_module=self.ref_module,
                                               reward_optimizer=self.reward_optimizer)

        self.flops_counter = FlopsCounter(self.reward_model_config)
        self.checkpoint_manager = FSDPCheckpointManager(model=self.reward_module,
                                                        optimizer=self.reward_optimizer,
                                                        lr_scheduler=self.reward_lr_scheduler,
                                                        tokenizer=self.tokenizer)

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
    def compute_rm_score(self, data: DataProto):
        data = data.to('cuda')

        if self._is_offload_param:
            load_fsdp_model_to_gpu(self.reward_module)
            load_fsdp_model_to_gpu(self.ref_module)
        micro_batch_size = self.config.micro_batch_size_per_gpu
        data.meta_info['micro_batch_size'] = micro_batch_size
        data.meta_info['max_token_len'] = self.config.forward_max_token_len_per_gpu
        data.meta_info['use_dynamic_bsz'] = self.config.use_dynamic_bsz
        # perform forward computation
        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data=data)
            rm_scores, q, metrics = self.rm.compute_rm_score(data=data)

            prompt_length = data.batch['prompts'].shape[-1]
            response_mask = data.batch['attention_mask'][:, prompt_length:]
            acc = data.batch['acc']

            dpo_acc = compute_dpo_accuracy(rm_scores, acc, response_mask=response_mask, n_samples=data.meta_info['n'])
            dpo_acc_abs = compute_dpo_abs_accuracy(rm_scores, acc, response_mask, n_samples=data.meta_info['n'])

            metrics['reward_model/dpo_acc'] = dpo_acc.detach().item()
            metrics['reward_model/dpo_acc_abs'] = dpo_acc_abs.detach().item()

            output = DataProto.from_dict(tensors={'rm_scores': rm_scores, 'q': q}, meta_info={'metrics': metrics})
            output = self.ulysses_sharding_manager.postprocess_data(data=output)

        output = output.to('cpu')
        if self._is_offload_param:
            offload_fsdp_model_to_cpu(self.reward_module)
            offload_fsdp_model_to_cpu(self.ref_module)
        return output

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
    def update_rm(self, data: DataProto):
        data = data.to('cuda')
        if self._is_offload_param:
            load_fsdp_model_to_gpu(self.ref_module)
            load_fsdp_model_to_gpu(self.reward_module)
        if self._is_offload_optimizer:
            load_fsdp_optimizer(optimizer=self.reward_optimizer, device_id=torch.cuda.current_device())

        # perform forward computation
        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data=data)

            rm_scores, metrics = self.rm.update_rm(data=data)

            self.reward_lr_scheduler.step()
            lr = self.reward_lr_scheduler.get_last_lr()[0]
            metrics['rm/lr'] = lr

            prompt_length = data.batch['prompts'].shape[-1]
            response_mask = data.batch['attention_mask'][:, prompt_length:]
            acc = data.batch['acc']

            dpo_acc_before = compute_dpo_accuracy(rm_scores,
                                                  acc,
                                                  response_mask=response_mask,
                                                  n_samples=data.meta_info['n'])
            dpo_acc_abs = compute_dpo_abs_accuracy(rm_scores, acc, response_mask, n_samples=data.meta_info['n'])

            metrics['reward_model/dpo_acc_before'] = dpo_acc_before.detach().item()
            metrics['reward_model/dpo_acc_abs_before'] = dpo_acc_abs.detach().item()

            output = DataProto.from_dict(tensors={'rm_scores': rm_scores}, meta_info={'metrics': metrics})
            output = self.ulysses_sharding_manager.postprocess_data(data=output)

        if self._is_offload_param:
            offload_fsdp_model_to_cpu(self.reward_module)
            offload_fsdp_model_to_cpu(self.ref_module)
        if self._is_offload_optimizer:
            offload_fsdp_optimizer(optimizer=self.reward_optimizer)
        output = output.to('cpu')
        return output

    @register(dispatch_mode=Dispatch.ONE_TO_ALL)
    def save_checkpoint(self, local_path, hdfs_path=None, global_step=0, max_ckpt_to_keep=None):
        import torch
        if self._is_offload_param:
            load_fsdp_model_to_gpu(self.reward_module)

        self.checkpoint_manager.save_checkpoint(local_path=local_path,
                                                hdfs_path=hdfs_path,
                                                global_step=global_step,
                                                max_ckpt_to_keep=max_ckpt_to_keep)

        torch.distributed.barrier()
        if self._is_offload_param:
            offload_fsdp_model_to_cpu(self.reward_module)

    @register(dispatch_mode=Dispatch.ONE_TO_ALL)
    def load_checkpoint(self, local_path, del_local_after_load=True):
        import torch
        if self._is_offload_param:
            load_fsdp_model_to_gpu(self.reward_module)

        self.checkpoint_manager.load_checkpoint(local_path=local_path, del_local_after_load=del_local_after_load)

        torch.distributed.barrier()
        if self._is_offload_param:
            offload_fsdp_model_to_cpu(self.reward_module)