prime_core_algos.py 6.29 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2024 PRIME team and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import verl
import verl.utils.torch_functional as verl_F


def compute_rloo_advantage_return(data: verl.DataProto, response_mask: torch.Tensor, n_samples, config):
    # calculate rloo reward on different reward sources, and sum again
    def masked_rloo(reward_tensor_original, mask_tensor):
        reward_tensor = reward_tensor_original.clone()
        reward_tensor[~mask_tensor] = 0
        for start_pos in range(0, reward_tensor.shape[0], n_samples):
            cur_rewards_mean = torch.cat([
                reward_tensor[pos:pos + 1][mask_tensor[pos:pos + 1]].mean(dim=0, keepdim=True)
                for pos in range(start_pos, start_pos + n_samples)
            ],
                                         dim=0)
            cur_rewards_sum = cur_rewards_mean.sum()
            cur_reward_baseline = cur_rewards_sum / (n_samples - 1)
            reward_tensor[start_pos:start_pos + n_samples][
                mask_tensor[start_pos:start_pos + n_samples]] = \
                reward_tensor[start_pos:start_pos + n_samples][
                    mask_tensor[start_pos:start_pos + n_samples]] * (
                        n_samples / (n_samples - 1)) - cur_reward_baseline

        return reward_tensor

    reward_tensors = []

    with torch.no_grad():

        if 'rm_scores' in data.batch.keys() and config.algorithm.reward_dpo_coef != 0.:
            reward_tensor = data.batch['rm_scores']
            reward_mask = response_mask.bool()

            reward_tensors.append(masked_rloo(reward_tensor, reward_mask) * config.algorithm.reward_dpo_coef)

        if 'acc' in data.batch.keys() and config.algorithm.reward_gt_coef != 0.:
            reward_tensor = torch.zeros_like(response_mask, dtype=torch.float32)
            reward_mask = torch.zeros_like(response_mask, dtype=torch.bool)

            prompt_ids = data.batch['prompts']
            prompt_length = prompt_ids.shape[-1]
            valid_response_length = data.batch['attention_mask'][:, prompt_length:].sum(-1)

            reward_mask[
                torch.arange(0, valid_response_length.shape[0], dtype=torch.long, device=valid_response_length.device),
                valid_response_length - 1] = True
            reward_tensor[
                torch.arange(0, valid_response_length.shape[0], dtype=torch.long, device=valid_response_length.device),
                valid_response_length - 1] = data.batch['acc']

            reward_tensors.append(masked_rloo(reward_tensor, reward_mask) * config.algorithm.reward_gt_coef)

        final_reward_tensor = sum(reward_tensors)

        returns = (final_reward_tensor * response_mask).flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1])

        advantages = returns.clone()
        advantages = verl_F.masked_whiten(advantages, response_mask)

        return advantages, returns


def compute_ce_dpo_loss_rm(token_level_scores, acc, response_mask, beta):
    cur_scores = ((token_level_scores * response_mask).sum(dim=1) * beta).sigmoid()
    cur_dpo_loss = torch.nn.functional.binary_cross_entropy(cur_scores, acc)
    return cur_dpo_loss


def compute_detach_dpo_loss_rm(token_level_scores, acc, Q_bc, acc_bc, response_mask, beta, bon_mode='none'):
    # we always assume that the BoN size equals n_samples
    # mode1: use acc as rm
    # mode2: use Q as rm
    cur_Q = (token_level_scores * response_mask).sum(dim=1) * beta
    other_Q = torch.zeros_like(cur_Q)
    for i in range(token_level_scores.shape[0]):
        if acc[i] > 0:
            Q_chosen = Q_bc[i][acc_bc[i] < acc[i]]
        else:
            Q_chosen = Q_bc[i][acc_bc[i] > acc[i]]
        if len(Q_chosen) > 0:
            other_Q[i] = Q_chosen.mean() * beta
        else:
            other_Q[i] = 0
    dpo_loss = -torch.log(torch.sigmoid((cur_Q - other_Q) * ((acc > 0).float() * 2 - 1)))
    if bon_mode == 'none':
        dpo_loss = dpo_loss.mean()
    else:
        weight = torch.zeros_like(dpo_loss)
        n_samples = acc_bc.shape[1]
        if bon_mode == 'bon_rm':
            for i in range(token_level_scores.shape[0]):
                weight[i] = n_samples * torch.pow((Q_bc[i] * beta <= cur_Q[i]).float().mean(), n_samples - 1)
        elif bon_mode == 'bon_acc':
            for i in range(token_level_scores.shape[0]):
                weight[i] = n_samples * torch.pow((acc_bc[i] <= acc[i]).float().mean(), n_samples - 1)
        else:
            raise NotImplementedError
        dpo_loss = (dpo_loss * weight).sum()

    return dpo_loss


def compute_dpo_accuracy(token_level_scores, acc, response_mask, n_samples):
    dpo_acc = []
    for start_id in range(0, token_level_scores.shape[0], n_samples):
        cur_scores = (token_level_scores[start_id:start_id + n_samples] *
                      response_mask[start_id:start_id + n_samples]).sum(dim=1)

        def get_upper_triangle(tensor_x):
            diff_matrix = tensor_x.unsqueeze(1) - tensor_x.unsqueeze(0)
            upper_tri_indices = torch.triu(torch.ones_like(diff_matrix).bool(), diagonal=1)
            return diff_matrix[upper_tri_indices]

        cur_acc_diff = get_upper_triangle(acc[start_id:start_id + n_samples])  # in range [-1,1]
        cur_score_diff = get_upper_triangle(cur_scores)  # in R
        cur_score_prediction = (cur_score_diff > 0).float()  # in [0,1]
        if cur_acc_diff.abs().sum() == 0:
            cur_acc = torch.zeros_like(cur_score_prediction[0]) + 0.5
        else:
            cur_acc = (((cur_score_diff > 0) == (cur_acc_diff > 0)).float() *
                       cur_acc_diff.abs()).sum() / cur_acc_diff.abs().sum()

        dpo_acc.append(cur_acc.unsqueeze(0))

    return torch.cat(dpo_acc, dim=0).mean()


def compute_dpo_abs_accuracy(token_level_scores, acc, response_mask, n_samples):
    return (torch.sign((token_level_scores * response_mask).sum(dim=-1)) == torch.sign(acc * 2 - 1)).float().mean()