verifiable.cu 38.6 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
/*************************************************************************
 * Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved.
 * Modifications Copyright (c) 2020-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * See LICENSE.txt for license information
 ************************************************************************/

//#pragma nv_diag_suppress declared_but_not_referenced

#include "verifiable.h"
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>

#include "rccl/rccl.h"

#if NCCL_VERSION_CODE >= NCCL_VERSION(2,10,0) && RCCL_BFLOAT16 ==1
  #define HAVE_ncclBfloat16 1
#else
  #define HAVE_ncclBfloat16 0
#endif

#if NCCL_VERSION_CODE >= NCCL_VERSION(2,10,0)
  #define HAVE_ncclAvg 1
#else
  #define HAVE_ncclAvg 0
#endif

#if NCCL_VERSION_CODE >= NCCL_VERSION(2,11,0)
  #define HAVE_ncclPreMulSum 1
#else
  #define HAVE_ncclPreMulSum 0
#endif

#include <algorithm>
#include <cassert>
#include <cstdio>
#include <cstdint>
#include <cmath>
#include <unistd.h>

using std::size_t;
using std::int8_t;
using std::int16_t;
using std::int32_t;
using std::int64_t;
using std::uint8_t;
using std::uint16_t;
using std::uint32_t;
using std::uint64_t;

////////////////////////////////////////////////////////////////////////////////

namespace {
template<typename T>
__device__ unsigned long long bitsOf(T x) {
  union { unsigned long long ull; T val; } u;
  u.ull = 0;
  u.val = x;
  return u.ull;
}

__host__ __device__ uint64_t mixBits(uint64_t x) {
  union { uint32_t u32[2]; uint64_t u64; };
  u64 = x;
  u32[1] += 1;
  u32[0] ^= u32[1];
  u64 *= 0x9e3779b97f4a7c13u;
  u32[0] ^= u32[1]<<16 ^ u32[1]>>16;
  return u64;
}

__host__ __device__ uint64_t hashOf(uint64_t a, uint64_t b=0) {
  a += uint64_t(1)<<32;
  a += b;
  a ^= a>>32;
  a *= 0x9e3779b97f4a7c13u;
  a += b>>16 ^ b<<48;
  a ^= a>>32;
  a *= 0xc4ceb9fe1a85ec53u;
  return a;
}
}

////////////////////////////////////////////////////////////////////////////////

namespace {
template<typename T>
struct IsIntegral: std::is_integral<T> {};
template<>
struct IsIntegral<__half>: std::false_type {};
#if RCCL_BFLOAT16 == 1
template<>
struct IsIntegral<hip_bfloat16>: std::false_type {};
#endif
}

////////////////////////////////////////////////////////////////////////////////

// Hide a value from arithmetic optimizations. Hopefully compiler cannot detect
// that this is equivalent to the identity function.
template<typename T>
__host__ __device__ T inhibit(T x) {
  union { uint64_t u64; T val; };
  u64 = 0;
  val = x;
  u64 *= 0x0000000100000001u;
  u64 *= 0xffffffff00000001u;
  return val;
}

////////////////////////////////////////////////////////////////////////////////

namespace {
  template<typename Y, typename X>
  __host__ __device__ Y castTo(X x) {
    return Y(x);
  }
  template<typename Y>
  __host__ __device__ Y castTo(float x) {
    return Y(x);
  }
  template<>
  __host__ __device__ __half castTo<__half>(float x) {
    return __float2half(x);
  }
  #if RCCL_BFLOAT16 == 1
  template<>
  __host__ __device__ hip_bfloat16 castTo<hip_bfloat16>(float x) {
    return hip_bfloat16(x);
  }
  #endif
}

////////////////////////////////////////////////////////////////////////////////
// The reduction functions

namespace {
struct ReduceNil {
  template<typename T>
  __host__ __device__ T preOp(T x, int /*rank_me*/) const { return x; }
  template<typename T>
  __host__ __device__ T operator()(T a, T /*b*/) const { return a; }
  template<typename T>
  __host__ __device__ T postOp(T x) const { return x; }
};
struct ReduceSum {
  template<typename T>
  __host__ __device__ T preOp(T x, int /*rank_me*/) const { return x; }
  template<typename T, typename=decltype(T()+T())>
  __host__ __device__ T operator()(T a, T b) const { return a + b; }
  __host__ __device__ __half operator()(__half a, __half b) const {
      return __float2half(__half2float(a) + __half2float(b));
  }
  #if RCCL_BFLOAT16 == 1
  __host__ __device__ hip_bfloat16 operator()(hip_bfloat16 a, hip_bfloat16 b) const {
      return hip_bfloat16(static_cast<float>(a) + static_cast<float>(b));
  }
  #endif
  template<typename T>
  __host__ __device__ T postOp(T x) const { return x; }
};
struct ReduceProd {
  template<typename T>
  __host__ __device__ T preOp(T x, int /*rank_me*/) const { return x; }
  template<typename T, typename=decltype(T()*T())>
  __host__ __device__ T operator()(T a, T b) const { return a * b; }
  __host__ __device__ __half operator()(__half a, __half b) const {
      return __float2half(__half2float(a) * __half2float(b));
  }
  #if RCCL_BFLOAT16 == 1
  __host__ __device__ hip_bfloat16 operator()(hip_bfloat16 a, hip_bfloat16 b) const {
      return hip_bfloat16(static_cast<float>(a) * static_cast<float>(b));
  }
  #endif
  template<typename T>
  __host__ __device__ T postOp(T x) const { return x; }
};
struct ReduceMin {
  template<typename T>
  __host__ __device__ T preOp(T x, int /*rank_me*/) const { return x; }
  template<typename T, typename=decltype(T()<T())>
  __host__ __device__ T operator()(T a, T b) const { return a < b ? a : b; }
  __host__ __device__ __half operator()(__half a, __half b) const {
    return __half2float(a) < __half2float(b) ? a : b;
  }
  #if RCCL_BFLOAT16 == 1
  __host__ __device__ hip_bfloat16 operator()(hip_bfloat16 a, hip_bfloat16 b) const {
      return static_cast<float>(a) < static_cast<float>(b) ? a : b;
  }
  #endif
  template<typename T>
  __host__ __device__ T postOp(T x) const { return x; }
};
struct ReduceMax {
  template<typename T>
  __host__ __device__ T preOp(T x, int /*rank_me*/) const { return x; }
  template<typename T, typename=decltype(T()>T())>
  __host__ __device__ T operator()(T a, T b) const { return a > b ? a : b; }
  __host__ __device__ __half operator()(__half a, __half b) const {
      return __half2float(a) > __half2float(b) ? a : b;
  }
  #if RCCL_BFLOAT16 == 1
  __host__ __device__ hip_bfloat16 operator()(hip_bfloat16 a, hip_bfloat16 b) const {
      return static_cast<float>(a) > static_cast<float>(b) ? a : b;
  }
  #endif
  template<typename T>
  __host__ __device__ T postOp(T x) const { return x; }
};
struct ReducePreMulSum {
  template<typename T>
  __host__ __device__ T preOp(T x, int rank_me) const {
    return ReduceProd()(x, ncclVerifiablePremulScalar<T>(rank_me));
  }
  template<typename T>
  __host__ __device__ T operator()(T a, T b) const { return ReduceSum()(a, b); }
  template<typename T>
  __host__ __device__ T postOp(T x) const { return x; }
};

template<typename T, bool integral = IsIntegral<T>::value>
struct ReduceAvg_Base;

template<typename T>
struct ReduceAvg_Base<T, /*integral=*/true> {
  int rank_n;
  __host__ __device__ T preOp(T x, int /*rank_me*/) const { return x; }
  __host__ __device__ T operator()(T a, T b) const { return ReduceSum()(a, b); }
  __host__ __device__ T postOp(T x) const { return x/rank_n; }
};

template<typename T>
struct ReduceAvg_Base<T, /*integral=*/false> {
  int rank_n;
  __host__ __device__ T preOp(T x, int /*rank_me*/) const {
    using T1 = typename std::conditional<(sizeof(T)<sizeof(double)), float, double>::type;
    return ReduceProd()(inhibit(castTo<T>(T1(1)/T1(rank_n))), inhibit(x));
  }
  __host__ __device__ T operator()(T a, T b) const { return ReduceSum()(a, b); }
  __host__ __device__ T postOp(T x) const { return x; }
};

struct ReduceAvg {
  int rank_n;
  template<typename T>
  __host__ __device__ T preOp(T x, int rank_me) const {
    return ReduceAvg_Base<T>{rank_n}.preOp(x, rank_me);
  }
  template<typename T>
  __host__ __device__ T operator()(T a, T b) const {
    return ReduceAvg_Base<T>{rank_n}(a, b);
  }
  template<typename T>
  __host__ __device__ T postOp(T x) const {
    return ReduceAvg_Base<T>{rank_n}.postOp(x);
  }
};
}

////////////////////////////////////////////////////////////////////////////////

namespace {
template<typename T>
struct FloatLayout;
template<>
struct FloatLayout<float> {
  static constexpr int exponent_bits = 8, mantissa_bits = 23;
  static constexpr int exponent_bias = (1<<(exponent_bits-1))-1;
};
template<>
struct FloatLayout<double> {
  static constexpr int exponent_bits = 11, mantissa_bits = 52;
  static constexpr int exponent_bias = (1<<(exponent_bits-1))-1;
};
template<>
struct FloatLayout<__half> {
  static constexpr int exponent_bits = 5, mantissa_bits = 10;
  static constexpr int exponent_bias = (1<<(exponent_bits-1))-1;
};
#if RCCL_BFLOAT16 == 1
template<>
struct FloatLayout<hip_bfloat16> {
  static constexpr int exponent_bits = 8, mantissa_bits = 7;
  static constexpr int exponent_bias = (1<<(exponent_bits-1))-1;
};
#endif

template<typename T>
__host__ __device__ T makeFloat(int sign, int exp, uint64_t mant) {
  union { T ans; uint64_t bits; };
  bits = sign;
  bits <<= FloatLayout<T>::exponent_bits;
  bits |= exp;
  bits <<= FloatLayout<T>::mantissa_bits;
  bits |= mant;
  return ans;
}
}

////////////////////////////////////////////////////////////////////////////////

namespace {
// High bits of multiplcation are useful for generating bounded random values
// from unbounded random values. For instance, given X a totally random 32-bit
// integer, `umul32hi(X,n)` will be totally random within [0,n).
__host__ __device__ uint64_t umul32hi(uint32_t a, uint32_t b) {
#if HIP_VERSION > 50200000
  return __umulhi(a, b);
#else
  return uint64_t(a)*b >> 32;
#endif
}
__host__ __device__ uint64_t umul64hi(uint64_t a, uint64_t b) {
#if HIP_VERSION > 50200000
  return __umul64hi(a, b);
#else
  return uint64_t(__uint128_t(a)*__uint128_t(b) >> 64);
#endif
}

__host__ __device__ int clz32(int x) {
#if HIP_VERSION > 50200000
  return __clz(x);
#else
  return x==0 ? 32 : __builtin_clz(x);
#endif
}
__host__ __device__ int clz64(long long x) {
#if HIP_VERSION > 50200000
  return __clzll(x);
#else
  return x==0 ? 64 : __builtin_clzll(x);
#endif
}
}

////////////////////////////////////////////////////////////////////////////////

namespace {
// Returns a wildly permuted rank index. Useful when we know we want exactly N
// random ranks to exhibit some behavior, we can just test if:
// `shuffleRank(rank_n, rank_me, rng) < N`. Note that rank_n > 0 must be true
// for well defined results. This mixes the bits of rng.
__host__ __device__ int shuffleRank(int rank_n, int rank_me, uint64_t &rng) {
  uint32_t a = uint32_t(rng);
  uint32_t b = uint32_t(rng>>32);
  rng = mixBits(rng);

  uint32_t r = rank_me;
  // round down rank_n to largest pow2, then subtract 1
  uint32_t n2 = (~uint32_t(0)>>1) >> clz32(rank_n);

  // These are 1:1 functions modulo 2^n:
  //   f(x) = x*a + b : for odd a, any b
  //   f(x) = (x*x + x)/2
  // So we apply both to the bottom n2+1 ranks, then rotate the top
  // (rank_n-n2-1) to the bottom and apply both again.

  if(r <= n2) {
    // shuffle bottom n2+1 ranks
    r = (r*(a|1) + b) & n2;
    r = (r*r + r)/2 & n2;
    // rotate top to bottom
    r += rank_n - (n2+1);
  }
  else
    r -= n2+1; // rotate top to bottom

  if(r <= n2) {
    // shuffle bottom n2+1 again
    r = (r*(b|1) + a) & n2;
    r = (r*r + r)/2 & n2;
  }
  return r;
}
}

namespace {
// Generate wild integers x and y such that if every rank submits its x into a
// summation the result will be y with y <= y_max. Ranks should be shuffled
// before calling.
template<typename Uint>
__host__ __device__ void genSumXY(
    int rank_n, int rank_me, uint64_t &rng, Uint y_max, Uint &x, Uint &y,
    bool avoid_y=false // if true then returned y will not equal given y
  ) {
  static_assert(std::is_unsigned<Uint>::value, "Type must be unsigned integral.");

  { // Pick y as a random value in [y_max/2, y_max]
    Uint d, y_min = (y_max+1)/2;
    if(8*sizeof(Uint) > 32)
      d = umul64hi(rng, y_max/2 + (avoid_y ? 0 : 1));
    else
      d = umul32hi(uint32_t(rng), y_max/2 + (avoid_y ? 0 : 1));
    Uint y1 = (avoid_y ? y+1 : y_min) + d;
    y = y1 - (avoid_y && (y1 < y_min || y_max < y1) ? y_max/2 : 0);
  }
  rng = mixBits(rng);

  unsigned r = unsigned(rank_me);
  unsigned rn = unsigned(rank_n);
  // Partition our rn ranks into pn distinct subsets each of size rn/pn. If each
  // rank submits 1+p (where p is 0-based partition index) then the sum be:
  //   (rn/pn) * pn*(pn+1)/2
  // So set this equal to our desired sum y and solve for pn.
  //   (rn/pn) * pn*(pn+1)/2 = y
  //   rn*(pn+1)/2 = y
  //   pn = 2*(y/rn)-1
  Uint pn = rn == 1 ? 1 : 2*(y/rn) - 1;
  // In the case where rn is huge (compared to y) use only one partition meaning
  // that all rn ranks will submit 1 (since p=0).
  pn = pn == 0 ? 1 : pn;
  // Can't have more partitions than ranks.
  pn = rn < pn ? rn : pn;
  // Compute sum of contribution from pn partitions where each submits p+1.
  Uint p_sum;
  if(y_max <= ~uint32_t(0)>>1) // compile time known
    p_sum = Uint(uint32_t(pn)*uint32_t(pn+1)/2);
  else
    p_sum = Uint(uint64_t(pn)*uint64_t(pn+1)/2);
  // Let s be the number of ranks per partition. This is either rn/pn as we
  // intended, or y/p_sum if that's smaller to prevent overshooting our target y.
  uint32_t s = y/p_sum < rn/pn ? y/p_sum : rn/pn;
  x = (s != 0 && r/s < pn) ? 1 + r/s : 0; //  First s*pn ranks contribute partition index +1.
  x += r == rn-1 ? y - s*p_sum : 0; // Last rank contributes discrepancy.
}
}

namespace {
template<typename T>
__host__ __device__ T genInOutFloatSum(
    bool input_not_output, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    bool same_sign
  ) {
  constexpr int exp_lo = 1 + FloatLayout<T>::mantissa_bits;
  constexpr int exp_hi = (1<<FloatLayout<T>::exponent_bits)-1;
  using uintmant_t = typename std::conditional<(8*sizeof(T) > 32), uint64_t, uint32_t>::type;
  constexpr uintmant_t mant_mask = (uintmant_t(1) << FloatLayout<T>::mantissa_bits)-1;
  constexpr uintmant_t max_mant = 2*mant_mask + 1; // add implicit leading 1
  uint64_t rng = hashOf(seed, index);

  int y_sign = rng & 1;
  int x_sign = y_sign;
  int xy_exp = exp_lo + umul32hi(uint32_t(rng>>32), exp_hi-exp_lo);
  rng = mixBits(rng);
  rank_me = shuffleRank(rank_n, rank_me, rng);

  // If we're using mixed signs then partition into evens and odds.
  int subrank_n = same_sign ? rank_n : (rank_n+1)/2;
  int subrank_me = same_sign ? rank_me : rank_me/2;
  uintmant_t x0_mant, y0_mant;
  genSumXY(subrank_n, subrank_me, rng, max_mant, x0_mant, y0_mant);

  if (!same_sign && (rank_n+0)/2 != 0) {
    uintmant_t x1_mant, y1_mant = y0_mant;
    // Avoid generating y1_mant == y0_mant so we don't have to worry about
    // signed zero as the result.
    genSumXY((rank_n+0)/2, rank_me/2, rng, max_mant, x1_mant, y1_mant, /*avoid_y=*/true);
    y_sign ^= y0_mant < y1_mant ? 1 : 0;
    y0_mant = (y0_mant < y1_mant ? -1 : 1)*(y0_mant - y1_mant);
    x_sign ^= rank_me%2;
    x0_mant = rank_me%2 == 0 ? x0_mant : x1_mant;
  }

  uintmant_t ans_mant = input_not_output ? x0_mant : y0_mant;
  if(ans_mant == 0)
    return T(0.0f);
  else {
    int shift = clz64(ans_mant) - (64-FloatLayout<T>::mantissa_bits-1);
    int ans_sign = input_not_output ? x_sign : y_sign;
    int ans_exp = xy_exp - shift;
    ans_mant <<= shift;
    return makeFloat<T>(ans_sign, ans_exp, ans_mant & mant_mask);
  }
}
}

namespace {
template<typename T>
__host__ __device__ T genInOutFloatPreMulSum(
    bool input_not_output, int rank_n, int rank_me, uint64_t seed, intptr_t index
  ) {
  constexpr int exp_lo = 1 + FloatLayout<T>::mantissa_bits;
  constexpr int exp_hi = (1<<FloatLayout<T>::exponent_bits)-1;
  using uintmant_t = typename std::conditional<(8*sizeof(T) > 32), uint64_t, uint32_t>::type;
  constexpr uintmant_t mant_mask = (uintmant_t(1) << FloatLayout<T>::mantissa_bits)-1;
  constexpr uintmant_t max_mant = 2*mant_mask + 1; // add implicit leading 1
  uint64_t rng = hashOf(seed, index);

  int y_sign = rng & 1;
  int y_exp = exp_lo + umul32hi(uint32_t(rng>>32), exp_hi-exp_lo);
  rng = mixBits(rng);
  int subrank_me0 = shuffleRank((rank_n+1)/2, rank_me/2, rng);
  int subrank_me1 = shuffleRank((rank_n+0)/2, rank_me/2, rng);

  // when ncclVerifiablePremulScalar() = 1.0 (rank_me%2 == 0)
  uintmant_t x0_mant, y0_mant;
  genSumXY((rank_n+1)/2, subrank_me0, rng, max_mant>>1, x0_mant, y0_mant);

  // when ncclVerifiablePremulScalar() = 2.0 (rank_me%2 == 1)
  uintmant_t x1_mant=0, y1_mant=0;
  if((rank_n+0)/2 != 0)
    genSumXY((rank_n+0)/2, subrank_me1, rng, max_mant>>2, x1_mant, y1_mant);

  uintmant_t x_mant = rank_me%2 == 0 ? x0_mant : x1_mant;
  uintmant_t y_mant = y0_mant + 2*y1_mant;
  uintmant_t ans_mant = input_not_output ? x_mant : y_mant;

  if(ans_mant == 0)
    return T(0.0f);
  else {
    int shift = clz64(ans_mant) - (64-FloatLayout<T>::mantissa_bits-1);
    int ans_sign = y_sign;
    int ans_exp = y_exp - shift;
    ans_mant <<= shift;
    return makeFloat<T>(ans_sign, ans_exp, ans_mant & mant_mask);
  }
}
}

namespace {
template<typename T>
__host__ __device__ T genInOutFloatProd(
    bool input_not_output, int rank_n, int rank_me, uint64_t seed, intptr_t index
  ) {
  // Three kinds of contributions (values for x):
  // 1) x = random value: only one rank does this
  // 2) x = 2^n: random positive n
  // 3) x = 1
  // Since only one rank submits a random value, the result of the product
  // will have the same mantissa as that value but with an exponent incorporating
  // the sum of the exponents from case (2)

  uint64_t rng = hashOf(seed, index);
  rank_me = shuffleRank(rank_n, rank_me, rng);
  int y_sign = (rank_n/2)%2;
  int x_sign = rank_me%2;

  constexpr unsigned max_exp = -1 + (1<<(FloatLayout<T>::exponent_bits-1));
  unsigned x_exp=0, y_exp=0;
  genSumXY(rank_n, rank_me, rng, max_exp, x_exp, y_exp);
  x_exp += FloatLayout<T>::exponent_bias;
  y_exp += FloatLayout<T>::exponent_bias;

  constexpr uint64_t mant_mask = (uint64_t(1)<<FloatLayout<T>::mantissa_bits)-1;
  uint64_t y_mant = rng & mant_mask;
  if (y_mant == 0) y_mant = 1;

  return makeFloat<T>(
    input_not_output ? x_sign : y_sign,
    input_not_output ? x_exp : y_exp,
    !input_not_output || rank_me==0 ? y_mant : 0
  );
}
}

////////////////////////////////////////////////////////////////////////////////
// What follows is lots of overloads for genInput/genOutput to generate data

namespace {
// General case for integral data for all ops but ReduceNil/premulsum
template<typename T, typename ReduceFn,
         typename = typename std::enable_if<
             !std::is_same<ReduceFn, ReduceNil>::value
           >::type>
__host__ __device__ void genInput(
    T &ans, ReduceFn, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::true_type /*integral*/
  ) {
  (void)rank_n; // silence unused warnings
  union { uint64_t bits; T tmp; };
  bits = uint64_t(-1)>>(64 - 8*sizeof(T));
  bits &= hashOf(index ^ index<<16 ^ rank_me, seed);
  // make sure we never return 0 in products
  ans = std::is_same<ReduceFn, ReduceProd>::value && bits == 0 ? T(1) : tmp;
}
}

////////////////////////////////////////////////////////////////////////////////
// Dumb/generic case for genOutput just reduces results of genInput

namespace {
template<typename T, typename ReduceFn, bool IsIntegral>
__host__ __device__ void genOutput(
    T &ans, ReduceFn op, int rank_n, uint64_t seed, intptr_t index,
    std::integral_constant<bool, IsIntegral>
  ) {
  T acc = genInput<T>(op, rank_n, 0, seed, index);
  acc = op.preOp(acc, 0);
  for(int r=1; r < rank_n; r++)
    acc = op(acc, op.preOp(genInput<T>(op, rank_n, r, seed, index), r));
  ans = op.postOp(acc);
}
}

////////////////////////////////////////////////////////////////////////////////
// Nil reduction (byte copy functions). Optimized to assume rank_n=1

namespace {
template<typename T, bool IsIntegral>
__host__ __device__ void genInput(
    T &ans, ReduceNil, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::integral_constant<bool, IsIntegral>
  ) {
  (void)rank_n, (void)rank_me; // silence unused warnings
  union { uint64_t bits; T tmp; };
  bits = mixBits(seed ^ index);
  bits >>= 64 - 8*sizeof(T);
  bits &= uint64_t(-1)>>(64 - 8*sizeof(T));
  ans = tmp;
}

template<typename T, typename ReduceFn, bool IsIntegral>
__host__ __device__ void genOutput(
    T &ans, ReduceNil op, int rank_n, uint64_t seed, intptr_t index,
    std::integral_constant<bool, IsIntegral>
  ) {
  ans = genInput<T>(op, rank_n, 0, seed, index);
}
}

////////////////////////////////////////////////////////////////////////////////
// Sum of float

namespace {
template<typename T>
__host__ __device__ void genInput(
    T &ans, ReduceSum, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatSum<T>(/*input_not_output=*/true, rank_n, rank_me, seed, index, /*same_sign=*/false);
}

template<typename T>
__host__ __device__ void genOutput(
    T &ans, ReduceSum, int rank_n, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatSum<T>(/*input_not_output=*/false, rank_n, 0, seed, index, /*same_sign=*/false);
}
}

////////////////////////////////////////////////////////////////////////////////
// Product of float

namespace {
template<typename T>
__host__ __device__ void genInput(
    T &ans, ReduceProd, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatProd<T>(/*input_not_output=*/true, rank_n, rank_me, seed, index);
}

template<typename T>
__host__ __device__ void genOutput(
    T &ans, ReduceProd, int rank_n, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatProd<T>(/*input_not_output=*/false, rank_n, 0, seed, index);
}
}

////////////////////////////////////////////////////////////////////////////////
// PreMulSum of int/float

namespace {
template<typename T>
__host__ __device__ void genInput(
    T &ans, ReducePreMulSum, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::true_type integral
  ) {
  genInput(ans, ReduceSum(), rank_n, rank_me, seed, index, integral);
}

// No genOutput overload specific to premulsum(int), just use generic case.

template<typename T>
__host__ __device__ void genInput(
    T &ans, ReducePreMulSum, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatPreMulSum<T>(/*input_not_output=*/true, rank_n, rank_me, seed, index);
}

template<typename T>
__host__ __device__ void genOutput(
    T &ans, ReducePreMulSum, int rank_n, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatPreMulSum<T>(/*input_not_output=*/false, rank_n, 0, seed, index);
}
}

/////////////////////////////////////////////////////////////////////////////////
// Average of float

namespace {
template<typename T>
__host__ __device__ void genInput(
    T &ans, ReduceAvg, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatSum<T>(/*input_not_output=*/true, rank_n, rank_me, seed, index, /*same_sign=*/true);
}

template<typename T>
__host__ __device__ void genOutput(
    T &ans, ReduceAvg, int rank_n, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  ans = genInOutFloatSum<T>(/*input_not_output=*/false, rank_n, 0, seed, index, /*same_sign=*/true);
  using T1 = typename std::conditional<(sizeof(T)<sizeof(double)), float, double>::type;
  //ans = ReduceProd()(ans, T1(1)/T1(rank_n));
  ans = ReduceProd()(ans, inhibit(castTo<T>(T1(1)/T1(rank_n))));
 }
}

/////////////////////////////////////////////////////////////////////////////////
// min/max of float

namespace {
template<typename T>
__host__ __device__ void genInput(
    T &ans, ReduceMin, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::false_type integral
  ) {
  genInput<T>(ans, ReduceMax(), rank_n, rank_me, seed, index, integral);
}
template<typename T>
__host__ __device__ void genInput(
    T &ans, ReduceMax, int rank_n, int rank_me, uint64_t seed, intptr_t index,
    std::false_type /*integral*/
  ) {
  (void)rank_n; // silence unused warnings
  constexpr uint64_t mant_mask = (uint64_t(1) << FloatLayout<T>::mantissa_bits)-1;
  uint64_t rng = hashOf(index ^ index<<16 ^ rank_me, seed);
  int sign = rng & 1;
  rng ^= rng>>1;
  int exp = rng & ((1<<(FloatLayout<T>::exponent_bits-1))-1);
  exp += 1<<(FloatLayout<T>::exponent_bits-2);
  rng ^= rng >> FloatLayout<T>::exponent_bits;
  uint64_t mant = rng & mant_mask;
  ans = makeFloat<T>(sign, exp, mant);
}

// No genOutput overload specific to floating point min/max, just use generic case.
}

///////////////////////////////////////////////////////////////////////////////
// Entry API for genInput/genOutput

namespace {
template<typename T, typename ReduceFn>
__host__ __device__ T genInput(
    ReduceFn op, int rank_n, int rank_me, uint64_t seed, intptr_t index
  ) {
  T ans;
  genInput(ans, op, rank_n, rank_me, seed, index,
    std::integral_constant<bool, IsIntegral<T>::value>());
  return ans;
}

template<typename T, typename ReduceFn>
__host__ __device__ T genOutput(
    ReduceFn op, int rank_n, uint64_t seed, intptr_t index
  ) {
  T ans;
  genOutput(ans, op, rank_n, seed, index,
    std::integral_constant<bool, IsIntegral<T>::value>());
  return ans;
}
}

////////////////////////////////////////////////////////////////////////////////

#if !SELF_TEST
namespace {
template<typename T, typename ReduceFn>
__global__ void prepareInput2(
    T *elts, intptr_t elt_n, ReduceFn op, int rank_n, int rank_me,
    uint64_t seed, intptr_t elt_ix0
  ) {
  intptr_t i0 = blockIdx.x*(elt_n/gridDim.x);
  i0 += blockIdx.x < elt_n%gridDim.x ? blockIdx.x : elt_n%gridDim.x;
  intptr_t i1 = (blockIdx.x+1)*(elt_n/gridDim.x);
  i1 += blockIdx.x+1 < elt_n%gridDim.x ? blockIdx.x+1 : elt_n%gridDim.x;
  intptr_t i = i0 + threadIdx.x;
  while(i < i1) {
    elts[i] = genInput<T>(op, rank_n, rank_me, seed, elt_ix0+i);
    #if 0
    T output = genOutput<T>(op, rank_n, seed, elt_ix0+i);
    printf("prepareInput2 T=%d seed=0x%llx r=%d ix=%lld x=%g output=%g elts=%p\n",
      std::is_same<T,int>::value, (long long)seed, int(rank_me), (long long)i, (float)elts[i], (float)output, elts);
    #endif
    i += blockDim.x;
  }
}

template<typename ReduceOp>
void prepareInput1(
    void *elts, intptr_t elt_n, int elt_ty, ReduceOp op, int rank_n, int rank_me,
    uint64_t seed, intptr_t elt_ix0, hipStream_t stream
  ) {
  int block_n = std::min<intptr_t>(32, (elt_n + 4*512-1)/(4*512));
  #define CASE_TY(T) prepareInput2<<<block_n, 512, 0, stream>>>((T*)elts, elt_n, op, rank_n, rank_me, seed, elt_ix0); break;
  switch(elt_ty) {
  case ncclInt8: CASE_TY(int8_t)
  case ncclUint8: CASE_TY(uint8_t)
  case ncclInt32: CASE_TY(int32_t)
  case ncclUint32: CASE_TY(uint32_t)
  case ncclInt64: CASE_TY(int64_t)
  case ncclUint64: CASE_TY(uint64_t)
  case ncclFloat16: CASE_TY(__half)
  #if HAVE_ncclBfloat16
  case ncclBfloat16: CASE_TY(hip_bfloat16)
  #endif
  case ncclFloat32: CASE_TY(float)
  case ncclFloat64: CASE_TY(double)
  default: assert(0);
  }
  #undef CASE_TY
}
}

void ncclVerifiablePrepareInput(
    void *elts, intptr_t elt_n, int elt_ty, int red_op, int rank_n, int rank_me,
    uint64_t seed, intptr_t elt_ix0, hipStream_t stream
  ) {
  #define CASE_OP(op) \
    if(rank_n == 1) \
      prepareInput1(elts, elt_n, elt_ty, ReduceNil(), rank_n, rank_me, seed, elt_ix0, stream); \
    else \
      prepareInput1(elts, elt_n, elt_ty, op, rank_n, rank_me, seed, elt_ix0, stream); \
    break;
  switch(red_op) {
  case ncclSum: CASE_OP(ReduceSum())
  case ncclMin: CASE_OP(ReduceMin())
  case ncclMax: CASE_OP(ReduceMax())
  case ncclProd: CASE_OP(ReduceProd())
  #if HAVE_ncclAvg
  case ncclAvg: CASE_OP(ReduceAvg{rank_n})
  #endif
  #if HAVE_ncclPreMulSum
  default: CASE_OP(ReducePreMulSum())
  #endif
  }
  #undef CASE_OP
}
#endif

////////////////////////////////////////////////////////////////////////////////

#if !SELF_TEST
namespace {
template<typename T, typename ReduceFn>
__global__ void prepareExpected2(
    T *elts, intptr_t elt_n, ReduceFn op, int rank_n,
    uint64_t seed, intptr_t elt_ix0
  ) {
  intptr_t i0 = blockIdx.x*(elt_n/gridDim.x);
  i0 += blockIdx.x < elt_n%gridDim.x ? blockIdx.x : elt_n%gridDim.x;
  intptr_t i1 = (blockIdx.x+1)*(elt_n/gridDim.x);
  i1 += blockIdx.x+1 < elt_n%gridDim.x ? blockIdx.x+1 : elt_n%gridDim.x;
  intptr_t i = i0 + threadIdx.x;
  while(i < i1) {
    elts[i] = genOutput<T>(op, rank_n, seed, elt_ix0+i);
    #if 0
    printf("prepareExpected2 seed=0x%llx ix=%lld x=%g elts=%p\n",
      (long long)seed, (long long)(elt_ix0+i), (float)elts[i], elts);
    #endif
    i += blockDim.x;
  }
}

template<typename ReduceOp>
void prepareExpected1(
    void *elts, intptr_t elt_n, int elt_ty, ReduceOp op, int rank_n,
    uint64_t seed, intptr_t elt_ix0, hipStream_t stream
  ) {
  int block_n = std::min<intptr_t>(32, (elt_n + 4*512-1)/(4*512));
  #define CASE_TY(T) prepareExpected2<<<block_n, 512, 0, stream>>>((T*)elts, elt_n, op, rank_n, seed, elt_ix0); break;
  switch(elt_ty) {
  case ncclInt8: CASE_TY(int8_t)
  case ncclUint8: CASE_TY(uint8_t)
  case ncclInt32: CASE_TY(int32_t)
  case ncclUint32: CASE_TY(uint32_t)
  case ncclInt64: CASE_TY(int64_t)
  case ncclUint64: CASE_TY(uint64_t)
  case ncclFloat16: CASE_TY(__half)
  #if HAVE_ncclBfloat16
  case ncclBfloat16: CASE_TY(hip_bfloat16)
  #endif
  case ncclFloat32: CASE_TY(float)
  case ncclFloat64: CASE_TY(double)
  default: assert(0);
  }
  #undef CASE_TY
}
}

void ncclVerifiablePrepareExpected(
    void *elts, intptr_t elt_n, int elt_ty, int red_op, int rank_n,
    uint64_t seed, intptr_t elt_ix0, hipStream_t stream
  ) {
  #define CASE_OP(op) \
    if(rank_n == 1) \
      prepareExpected1(elts, elt_n, elt_ty, ReduceNil(), rank_n, seed, elt_ix0, stream); \
    else \
      prepareExpected1(elts, elt_n, elt_ty, op, rank_n, seed, elt_ix0, stream); \
    break;
  switch(red_op) {
  case ncclSum: CASE_OP(ReduceSum())
  case ncclMin: CASE_OP(ReduceMin())
  case ncclMax: CASE_OP(ReduceMax())
  case ncclProd: CASE_OP(ReduceProd())
  #if HAVE_ncclAvg
  case ncclAvg: CASE_OP(ReduceAvg{rank_n})
  #endif
  #if HAVE_ncclPreMulSum
  default: CASE_OP(ReducePreMulSum())
  #endif
  }
  #undef CASE_OP
}
#endif

////////////////////////////////////////////////////////////////////////////////

namespace {
/* How we compare floating point values when exactness is impossible is interesting.
 * First, we take note that simply reinterpreting integer bits as floating point
 * gives us a monotonic mapping which exponentially spaces out floats. Thus
 * consecutive integers encode consecutive floats. In general, using integer
 * subraction on the bitpatterns of two floats gives us an integer which is the
 * logarithm of their relative difference. But, if the floats always have similar
 * exponents, than the integer difference is actually proportional to the
 * relative error (this is because we are counting hops in the mantissa bits only,
 * not the exponent bits). So a cheap way to compare if two floats are relatively
 * close is: abs(intBits(a), intBits(b)) < tolerance. The following formula
 * calculates such a tolerance for a summation of n floats. This formula
 * was derived by inspecting the maximum observed integer difference over many
 * random runs of summation. The parameter values were computed by the
 * companion program "inexact_regress.cu".
 */
__host__ __device__ unsigned calcSumFloatTolerance(int rank_n, int elt_ty) {
  float power, coef;
  switch(elt_ty) {
  case ncclFloat32:
  case ncclFloat64:
    power = .51f;
    coef = 1.25f;
    break;
  case ncclFloat16:
    power = .91f;
    coef = .75f;
    break;
  #if HAVE_ncclBfloat16
  case ncclBfloat16:
    power = .91f;
    coef = .66f;
    break;
  #endif
  }
  #if __CUDA_ARCH__
    return 1 + unsigned(coef*powf(float(rank_n), power));
  #else
    return 1 + unsigned(coef*std::pow(float(rank_n), power));
  #endif
}

template<typename T>
__host__ __device__  uint64_t calcDelta(T a, T b) {
  union { T t; uint8_t i1; uint16_t i2; uint32_t i4; uint64_t i8; } x, y;
  x.t = a;
  y.t = b;
  switch(sizeof(T)) {
  case 1:  return x.i1 < y.i1 ? y.i1 - x.i1 : x.i1 - y.i1;
  case 2:  return x.i2 < y.i2 ? y.i2 - x.i2 : x.i2 - y.i2;
  case 4:  return x.i4 < y.i4 ? y.i4 - x.i4 : x.i4 - y.i4;
  default: return x.i8 < y.i8 ? y.i8 - x.i8 : x.i8 - y.i8;
  }
}
}

////////////////////////////////////////////////////////////////////////////////

#if !SELF_TEST
namespace {
template<typename T>
__global__ void verifyPrepared(
    T const *results, T const *expected, intptr_t elt_n, unsigned tolerance, int64_t *bad_elt_n
  ) {
  intptr_t i0 = blockIdx.x*(elt_n/gridDim.x);
  i0 += blockIdx.x < elt_n%gridDim.x ? blockIdx.x : elt_n%gridDim.x;
  intptr_t i1 = (blockIdx.x+1)*(elt_n/gridDim.x);
  i1 += blockIdx.x+1 < elt_n%gridDim.x ? blockIdx.x+1 : elt_n%gridDim.x;
  intptr_t i = i0 + threadIdx.x;
  int64_t bad = 0;

  while(i < i1) {
    T a = results[i], b = expected[i];
    T delta = a < b ? b - a : a - b;
    bad += tolerance < delta ? 1 : 0;
    #if 0
      if(tolerance < delta) {
        printf("verifyPrepared ix=%lld got=%g exp=%g\n", (long long)i, (float)results[i], (float)expected[i]);
      }
    #endif
    i += blockDim.x;
  }
  //asm volatile("red.global.add.u64 [%0],%1;" :: "l"(bad_elt_n), "l"(bad));
  atomicAdd((unsigned long *)bad_elt_n, (unsigned long)bad);
}

template<typename T, typename Uint, typename ReduceFn>
__global__ void verifyInline2(
    T const *results, intptr_t elt_n, ReduceFn op, int rank_n, uint64_t seed,
    intptr_t elt_ix0, unsigned tolerance, int64_t *bad_elt_n
  ) {
  intptr_t i0 = blockIdx.x*(elt_n/gridDim.x);
  i0 += blockIdx.x < elt_n%gridDim.x ? blockIdx.x : elt_n%gridDim.x;
  intptr_t i1 = (blockIdx.x+1)*(elt_n/gridDim.x);
  i1 += blockIdx.x+1 < elt_n%gridDim.x ? blockIdx.x+1 : elt_n%gridDim.x;
  intptr_t i = i0 + threadIdx.x;
  int64_t bad = 0;

  while(i < i1) {
    union { T t; Uint u; } a, b;
    a.t = results[i];
    b.t = genOutput<T>(op, rank_n, seed, elt_ix0+i);
    Uint delta = a.u < b.u ? b.u - a.u : a.u - b.u;
    bad += tolerance < delta ? 1 : 0;
    #if 0
      T input = genInput<T>(op, rank_n, 0, seed, elt_ix0+i);
      if(tolerance < delta) {
        printf("verifyInline2 fail T=%d ix=%lld got=%g exp=%g input=%g\n",
          std::is_same<T,int>::value, (long long)i, (float)a.t, (float)b.t, (float)input);
      } else {
        printf("verifyInline2 pass T=%d ix=%lld got=%g exp=%g input=%g\n",
          std::is_same<T,int>::value, (long long)i, (float)a.t, (float)b.t, (float)input);
      }
    #endif
    i += blockDim.x;
  }
  //asm volatile("red.global.add.u64 [%0],%1;" :: "l"(bad_elt_n), "l"(bad));
  atomicAdd((unsigned long*)bad_elt_n, (unsigned long)bad);
}

template<typename T, typename Uint>
void verifyInline1(
    T const *results, intptr_t elt_n, int red_op, int rank_n, uint64_t seed, intptr_t elt_ix0,
    unsigned tolerance, int64_t *bad_elt_n, hipStream_t stream, int block_n
  ) {
  #define CASE_OP(op) \
    if(rank_n == 1) \
    verifyInline2<T, Uint><<<block_n, 512, 0, stream>>> \
      ((T const*)results, elt_n, ReduceNil(), rank_n, seed, elt_ix0, tolerance, bad_elt_n); \
    else \
    verifyInline2<T, Uint><<<block_n, 512, 0, stream>>> \
      ((T const*)results, elt_n, op, rank_n, seed, elt_ix0, tolerance, bad_elt_n); \
    break;
  switch(red_op) {
  case ncclSum: CASE_OP(ReduceSum())
  case ncclMin: CASE_OP(ReduceMin())
  case ncclMax: CASE_OP(ReduceMax())
  case ncclProd: CASE_OP(ReduceProd())
  #if HAVE_ncclAvg
  case ncclAvg: CASE_OP(ReduceAvg{rank_n})
  #endif
  #if HAVE_ncclPreMulSum
  default: CASE_OP(ReducePreMulSum())
  #endif
  }
  #undef CASE_OP
}
}

void ncclVerifiableVerify(
    void const *results, void const *expected, intptr_t elt_n, int elt_ty,
    int red_op, int rank_n, uint64_t seed, intptr_t elt_ix0,
    int64_t *bad_elt_n, hipStream_t stream
  ) {
  bool floating = elt_ty == ncclFloat16 || elt_ty == ncclFloat32 || elt_ty == ncclFloat64;
  #if HAVE_ncclBfloat16
    floating |= elt_ty == ncclBfloat16;
  #endif

  unsigned tolerance = 0;
  #if HAVE_ncclAvg
  if (floating && red_op == ncclAvg)
    tolerance = calcSumFloatTolerance(rank_n, elt_ty);
  #endif

  int block_n = std::min<intptr_t>(32, (elt_n + 4*512-1)/(4*512));

  *bad_elt_n = 0;
  #define CASE_TY(T, Uint) { \
      if(expected != nullptr) { \
        verifyPrepared<<<block_n, 512, 0, stream>>>((Uint const*)results, (Uint const*)expected, elt_n, tolerance, bad_elt_n); \
      } else { \
        verifyInline1<T, Uint>((T const*)results, elt_n, red_op, rank_n, seed, elt_ix0, tolerance, bad_elt_n, stream, block_n); \
      } \
    } break;
  switch(elt_ty) {
  case ncclInt8: CASE_TY(int8_t, uint8_t)
  case ncclUint8: CASE_TY(uint8_t, uint8_t)
  case ncclInt32: CASE_TY(int32_t, uint32_t)
  case ncclUint32: CASE_TY(uint32_t, uint32_t)
  case ncclInt64: CASE_TY(int64_t, uint64_t)
  case ncclUint64: CASE_TY(uint64_t, uint64_t)
  case ncclFloat16: CASE_TY(__half, uint16_t)
  #if HAVE_ncclBfloat16
  case ncclBfloat16: CASE_TY(hip_bfloat16, uint16_t)
  #endif
  case ncclFloat32: CASE_TY(float, uint32_t)
  case ncclFloat64: CASE_TY(double, uint64_t)
  default: assert(0);
  }
  #undef CASE_TY
}
#endif

////////////////////////////////////////////////////////////////////////////////

#if SELF_TEST
#include <iostream>

template<typename T, typename Op>
__device__ void sweep2(int ty, char const *tyname, Op op, char const *opname, int rank_n) {
  //if(!std::is_same<T,half>::value) return;
  //if(!std::is_same<Op,ReduceProd>::value) return;
  //if(rank_n!=3) return;

  unsigned tolerance = !IsIntegral<T>::value && std::is_same<Op,ReduceAvg>::value ? calcSumFloatTolerance(rank_n, ty) : 0;
  uint64_t seed = 0xc8e2bed69766d533;

  for(int ix=threadIdx.x; ix < 10000; ix+=blockDim.x) {
    //if(ix!=387) continue;
    T y = genOutput<T>(op, rank_n, seed, ix);
    T sum;
    for(int r=0; r < rank_n; r++) {
      T x = genInput<T>(op, rank_n, r, seed, ix);
      x = op.preOp(x, r);
      sum = r==0 ? x : op(sum, inhibit(x));
      //std::printf("x = %llx, sum = %llx\n", bitsOf(x), bitsOf(sum));
    }
    sum = op.postOp(sum);
    if(tolerance < calcDelta(sum, y)) {
      printf(
        //"%10g != %10g  :  T=%-8s op=%-9s rank_n=%-1d ix=%-1d\n",
        "%llx != %llx  :  T=%-8s op=%-9s rank_n=%-1d ix=%-1d\n",
        *(long long*)&sum, *(long long*)&y, tyname, opname, rank_n, ix
      );
    }
  }
}

template<typename T>
__device__ void sweep1(int ty, char const *tyname) {
  for(int i=0; i < 10; i++) {
    int rank_n = (1<<i) + i;
    sweep2<T>(ty, tyname, ReduceSum(), "sum", rank_n);
    sweep2<T>(ty, tyname, ReduceProd(), "prod", rank_n);
    sweep2<T>(ty, tyname, ReduceMin(), "min", rank_n);
    sweep2<T>(ty, tyname, ReduceMax(), "max", rank_n);
    sweep2<T>(ty, tyname, ReducePreMulSum(), "premulsum", rank_n);
    sweep2<T>(ty, tyname, ReduceAvg{rank_n}, "avg", rank_n);
  }
}

__global__ void sweep() {
  sweep1<int8_t>(ncclInt8, "int8");
  sweep1<uint8_t>(ncclUint8, "uint8");
  sweep1<int32_t>(ncclInt32, "int32");
  sweep1<uint32_t>(ncclUint32, "uint32");
  sweep1<int64_t>(ncclInt64, "int64");
  sweep1<uint64_t>(ncclUint64, "uint64");
  sweep1<__half>(ncclFloat16, "half");
  #if HAVE_ncclBfloat16
    sweep1<hip_bfloat16>(ncclBfloat16, "bfloat16");
  #endif
  sweep1<float>(ncclFloat32, "float");
  sweep1<double>(ncclFloat64, "double");
}

int main(int arg_n, char **args) {
  std::cerr<<"You are hoping to see no output beyond this line."<<std::endl;
  hipSetDevice(0);
  sweep<<<1,512>>>();
  hipDeviceSynchronize();
  return 0;
}
#endif