eval_llm_compression.py 2.09 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from mmengine.config import read_base

with read_base():
    # LLM compression datasets
    from opencompass.configs.datasets.llm_compression.llm_compression import llm_compression_datasets

    # Model configs
    from opencompass.configs.models.qwen.hf_qwen1_5_7b import models as qwen1_5_7b
    from opencompass.configs.models.qwen.hf_qwen1_5_14b import models as qwen1_5_14b
    from opencompass.configs.models.hf_llama.hf_llama2_7b import models as llama2_7b
    from opencompass.configs.models.hf_llama.hf_llama2_13b import models as llama2_13b

from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.summarizers import LLMCompressionSummarizer
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask

# -------------Inference Stage ----------------------------------------
datasets = [*llm_compression_datasets]
workdir = 'outputs/llm_compression'

models = [
    *qwen1_5_7b,
    *qwen1_5_14b,
    *llama2_7b,
    *llama2_13b,
]

# Set custom batch_size and num_gpus for faster loss calculation
# Smaller batch_size should give more precise results, at the cost of worse performance
model_cfg = dict(batch_size=8, run_cfg=dict(num_gpus=4, num_procs=1))

for mdl in models:
    mdl.update(model_cfg)

infer = dict(
    # The OpenCompass implementation of BPC currently only supports NaivePartitioner, as the sliding window approach requires the dataset to be loaded sequentially. Using other partitioner types may produce incorrect results.
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=LocalRunner,
        task=dict(type=OpenICLInferTask),
        max_num_workers=256,  # Maximum concurrent evaluation task count
    ),
)

# -------------Evaluation Stage ----------------------------------------
eval = dict(partitioner=dict(type=NaivePartitioner),
            runner=dict(
                type=LocalRunner,
                task=dict(type=OpenICLEvalTask),
                max_num_workers=256,
            ))

# -------------Summarization Stage ----------------------------------------
summarizer = dict(type=LLMCompressionSummarizer)