eval_internlm_flames_chat.py 3.38 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from mmengine.config import read_base

from opencompass.models import HuggingFaceCausalLM
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.summarizers import FlamesSummarizer
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask

# -------------Inferen Stage ----------------------------------------

with read_base():
    from opencompass.configs.datasets.flames.flames_gen import flames_datasets
    from opencompass.configs.models.hf_internlm.hf_internlm2_chat_7b import \
        models

datasets = [*flames_datasets]

from opencompass.models import HuggingFaceCausalLM

_meta_template = dict(round=[
    dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
    dict(role='BOT',
         begin='<|im_start|>assistant\n',
         end='<|im_end|>\n',
         generate=True),
], )

models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='internlm2-chat-7b-hf',
        path='internlm/internlm2-chat-7b',
        tokenizer_path='internlm/internlm2-chat-7b',
        model_kwargs=dict(
            trust_remote_code=True,
            device_map='auto',
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            use_fast=False,
            trust_remote_code=True,
        ),
        max_out_len=2048,
        max_seq_len=2048,
        batch_size=8,
        meta_template=_meta_template,
        run_cfg=dict(num_gpus=1, num_procs=1),
        end_str='<|im_end|>',
        generation_kwargs={
            'eos_token_id': [2, 92542],
            'do_sample': True
        },
        batch_padding=True,
    )
]

infer = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(type=LocalRunner,
                max_num_workers=256,
                task=dict(type=OpenICLInferTask)),
)

# -------------Evalation Stage ----------------------------------------

## ------------- JudgeLLM Configuration---------------------------------
internlm1_chat_template = dict(round=[
    dict(role='HUMAN', begin='<|User|>:', end='\n'),
    dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
], )

judge_models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='flames-scorer',
        path='CaasiHUANG/flames-scorer',
        tokenizer_path='CaasiHUANG/flames-scorer',
        model_kwargs=dict(
            trust_remote_code=True,
            device_map='auto',
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            use_fast=False,
            trust_remote_code=True,
        ),
        generation_kwargs={'do_sample': True},
        max_out_len=512,
        max_seq_len=4096,
        batch_size=8,
        meta_template=internlm1_chat_template,
        run_cfg=dict(num_gpus=1, num_procs=1),
        end_str='<eoa>',
    )
]

## ------------- Evaluation Configuration----------------
eval = dict(
    partitioner=dict(
        type=SubjectiveNaivePartitioner,
        mode='singlescore',
        models=models,
        judge_models=judge_models,
    ),
    runner=dict(type=LocalRunner,
                max_num_workers=256,
                task=dict(type=SubjectiveEvalTask)),
)

summarizer = dict(type=FlamesSummarizer, judge_type='general')

work_dir = 'outputs/flames/'