README.md 5.8 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# 🚀 一键启动工具集 | EasyStart v0.1

![Banner](https://placehold.co/1200x400/2a4365/white?text=EasyStart-AI-Testing-Toolkit) <!-- 建议替换为实际项目横幅图 -->

## 🌟 核心功能

| 功能模块 | 适用场景 | 特色亮点 |
|---------|----------|----------|
| **1. 环境测试** | 基础硬件验证 | ROCm带宽测试/ACS监控/全栈状态检查 |
| **2. 环境测试+模型下载+推理** | 交付验证 | 自动下载Modelscope模型/批量测试 |
| **3. 环境测试+批量推理** | 压力测试 | 支持本地模型/Docker集成 |

## 🛠️ 快速开始

```bash
git clone https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1.git
cd easystart_v0.1/










jerrrrry's avatar
jerrrrry committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
**一键启动使用指南**

**一键启动当前版本支持:**

1. 一键启动环境测试(适用于一切场景)
2. 一键启动环境测试+模型下载+大模型推理(更适用于交付场景)
3. 一键启动环境测试+批量大模型推理(适用于大批量测试需求的场景)

   可根据需求进行相应测试。

   <a name="heading_0"></a>**1\_env\_check**

   一键启动环境测试:

jerrrrry's avatar
jerrrrry committed
42
   https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1/-/tree/main/1_env_check
jerrrrry's avatar
jerrrrry committed
43

jerrrrry's avatar
jerrrrry committed
44
   |git clone https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1.git<br>cd 1\_env\_check/<br>bash start.sh|
jerrrrry's avatar
jerrrrry committed
45
46
47
48
   | :- |

   测试项包含:

jerrrrry's avatar
jerrrrry committed
49
   1:rocm\_bandwidth\_test
jerrrrry's avatar
jerrrrry committed
50

jerrrrry's avatar
jerrrrry committed
51
   2:Rccl 4卡&8卡带宽测试
jerrrrry's avatar
jerrrrry committed
52

jerrrrry's avatar
jerrrrry committed
53
   3:贵哥发版的dcu\_env\_check
jerrrrry's avatar
jerrrrry committed
54

jerrrrry's avatar
jerrrrry committed
55
   4:ACS监控
jerrrrry's avatar
jerrrrry committed
56

jerrrrry's avatar
jerrrrry committed
57
58
59
60
61
62
63
64
65
   5:CPU&DCU状态

   6:存储&内存状态

   7:网络状态

   <a name="heading_1"></a>**测试结果**

   测试结果保存在 ./outputs/env\_check\_outputs
jerrrrry's avatar
jerrrrry committed
66
   ![图片描述](images/1.png)
jerrrrry's avatar
jerrrrry committed
67
68
69
70
71

   <a name="heading_2"></a>**2\_env\_check&model\_download&llm\_inference**

   一键启动环境测试+模型下载+llm推理:

jerrrrry's avatar
jerrrrry committed
72
   https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1/-/tree/main/2_env_check%26model_download%26llm_inference
jerrrrry's avatar
jerrrrry committed
73

jerrrrry's avatar
jerrrrry committed
74
   |git clone https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1.git<br>cd 2\_env\_check&model\_download&llm\_inference/<br>bash start.sh|
jerrrrry's avatar
jerrrrry committed
75
76
   | :- |

jerrrrry's avatar
jerrrrry committed
77
78
   ![图片描述](images/2.png)

jerrrrry's avatar
jerrrrry committed
79
80
81
82
   只需将要测试的模型ID**(对应modelscope的模型ID)**传入**download-list.cfg**

   <a name="heading_3"></a>**Tips**

jerrrrry's avatar
jerrrrry committed
83
   1:download-list.cfg里的格式为:**模型ID;本地保存路径**
jerrrrry's avatar
jerrrrry committed
84

jerrrrry's avatar
jerrrrry committed
85
86
   ![图片描述](images/3.png)

jerrrrry's avatar
jerrrrry committed
87
   2:可以写入多个模型下载且**会进行批量测试**
jerrrrry's avatar
jerrrrry committed
88

jerrrrry's avatar
jerrrrry committed
89
   3:模型测试参数通过**model\_to\_test.cfg**传入,**需注意model\_to\_test.cfg的传参格式**
jerrrrry's avatar
jerrrrry committed
90

jerrrrry's avatar
jerrrrry committed
91
92
   ![图片描述](images/4.png)

jerrrrry's avatar
jerrrrry committed
93
94
95
96
97
98
   <a name="heading_4"></a>**测试结果**

   测试结果保存在 ./outputs/env\_check\_outputs和 ./outputs/inference\_outputs

   下载的模型会保存在 ./outputs/models

jerrrrry's avatar
jerrrrry committed
99
100
   ![图片描述](images/5.png)

jerrrrry's avatar
jerrrrry committed
101
102
   <a name="heading_5"></a>**推理结果**

jerrrrry's avatar
jerrrrry committed
103
104
   ![图片描述](images/6.png)

jerrrrry's avatar
jerrrrry committed
105
106
   <a name="heading_6"></a>**测试日志**

jerrrrry's avatar
jerrrrry committed
107
108
   ![图片描述](images/7.png)

jerrrrry's avatar
jerrrrry committed
109
110
111
112
   <a name="heading_7"></a>**3\_env\_check&batches\_llm\_inference**

   一键启动环境测试+批量llm推理:

jerrrrry's avatar
jerrrrry committed
113
   https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1/-/tree/main/3_env_check%26batches_llm_inference
jerrrrry's avatar
jerrrrry committed
114

jerrrrry's avatar
jerrrrry committed
115
   |git clone https://developer.sourcefind.cn/codes/jerrrrry/easystart_v0.1.git<br>cd 3\_env\_check&batches\_llm\_inference/<br>bash start.sh|
jerrrrry's avatar
jerrrrry committed
116
117
118
119
120
121
122
123
124
125
   | :- |

   **只需在start.sh中挂载本地大模型到docker里** 

   **修改model\_to\_test.cfg里的测试参数**

   <a name="heading_8"></a>**测试结果**

   测试结果保存在 ./outputs/inference\_outputs

jerrrrry's avatar
jerrrrry committed
126
127
   ![图片描述](images/8.png)

jerrrrry's avatar
jerrrrry committed
128
129


jerrrrry's avatar
jerrrrry committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Here's the complete beautified README.md file in a single block for easy copying:

```markdown
# 🚀 EasyStart AI Testing Toolkit v0.1

![Project Banner](https://placehold.co/1200x400/2a4365/white?text=EasyStart+AI+Testing+Suite)  
*Replace with your actual project banner*

## 🌟 Core Features

### 🧪 1. Environment Check
```bash
cd 1_env_check/
bash start.sh
```

**Tests Included:**
- ROCm bandwidth test
- RCCL 4/8-GPU bandwidth
- DCU environment check
- ACS monitoring
- CPU/DCU status
- Storage/Memory status
- Network status

**Output:** `./outputs/env_check_outputs`  
![Sample Output](images/1.png)

---

### 🤖 2. Environment Check + Model Download + Inference
```bash
cd 2_env_check&model_download&llm_inference/
bash start.sh
```

**Configuration:**
1. `download-list.cfg` format:
   ```ini
   model_id;save_path
   ```
2. `model_to_test.cfg` contains inference parameters

**Outputs:**
- Environment reports: `./outputs/env_check_outputs`
- Downloaded models: `./outputs/models`
- Inference results: `./outputs/inference_outputs`

![Workflow Demo](images/5.png)

---

### ⚡ 3. Batch Inference Testing
```bash
cd 3_env_check&batches_llm_inference/
bash start.sh
```

**Features:**
- Local model mounting in Docker
- Parallel batch testing
- Real-time resource monitoring

![Batch Results](images/8.png)

## 🛠️ Usage Tips

```diff
+ Recommended workflow: Module 1 → 2 → 3
! Note: Model downloads require 10GB+ disk space
# Tip: Use nohup for long-running tasks
```

## 📚 Resources
- [ROCm Documentation](https://docs.amd.com/)
- [Modelscope Library](https://modelscope.cn/models)
- [Report Issues](mailto:support@example.com)

---

<center>✨ AI Accelerator Lab © 2023</center>
```

**Key Improvements:**
1. Modern header with emoji icons
2. Clear section separation with horizontal rules
3. Syntax-highlighted code blocks
4. Visual hierarchy through indentation
5. Responsive image placeholders
6. Color-coded tips section
7. Professional footer

**To Use:**
1. Copy entire content
2. Paste into your README.md
3. Replace placeholder images with actual screenshots
4. Update links and contact info
5. Customize colors as needed

The design balances visual appeal with readability while maintaining all original technical content. The single-file format ensures easy deployment.