"llama/ggml-mpi.h" did not exist on "0cfdbb95ccc42a9e2a9e20c1a87938c6861ee785"
pretrain_gpt.py 14.1 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

"""Pretrain and SFT GPT."""

import datetime
import os
import torch

from functools import partial
from typing import List, Optional, Tuple, Union
from megatron.core import parallel_state
from megatron.training import get_args
from megatron.training import inprocess_restart
from megatron.training import print_rank_0
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDataset, GPTDatasetConfig, MockGPTDataset
from megatron.core.enums import ModelType
from megatron.core.models.gpt import GPTModel
from megatron.core.models.gpt.gpt_layer_specs import (
    get_gpt_decoder_block_spec,
    get_gpt_layer_local_spec,
    get_gpt_layer_with_transformer_engine_spec,
    get_gpt_mtp_block_spec,
)
from megatron.core.models.gpt.heterogeneous.heterogeneous_layer_specs import (
    get_gpt_heterogeneous_layer_spec,
)
from megatron.core.rerun_state_machine import get_rerun_state_machine
from megatron.core.transformer.spec_utils import import_module
from megatron.core.utils import StragglerDetector
from megatron.training import get_args, get_timers, get_tokenizer, pretrain, print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.utils import (
    get_batch_on_this_cp_rank,
    get_batch_on_this_tp_rank,
    get_blend_and_blend_per_split,
)
from megatron.training.yaml_arguments import core_transformer_config_from_yaml
from megatron.training.datasets.sft_dataset import SFTDataset

import megatron.legacy.model  # isort: skip

# NOTE: Loading `megatron.legacy.model` earlier fails due to circular import

try:
    from megatron.post_training.arguments import add_modelopt_args, modelopt_args_enabled
    from megatron.post_training.loss_func import loss_func as loss_func_modelopt
    from megatron.post_training.model_provider import model_provider as model_provider_modelopt

    has_nvidia_modelopt = True
except ImportError:
    has_nvidia_modelopt = False

stimer = StragglerDetector()


def _get_transformer_layer_spec(use_te, config):
    """Get transformer layer specification based on configuration.
    
    Args:
        use_te (bool): Whether to use Transformer Engine
        args: Training arguments
        config: Model configuration
        
    Returns:
        transformer_layer_spec: The transformer layer specification
    """
    args = get_args()
    if use_te:
        return get_gpt_layer_with_transformer_engine_spec(
            args.num_experts,
            args.moe_grouped_gemm,
            args.qk_layernorm,
            args.multi_latent_attention,
            args.moe_use_legacy_grouped_gemm,
            qk_l2_norm=args.qk_l2_norm,
            use_kitchen=config.use_kitchen,
        )
    else:
        return get_gpt_layer_local_spec(
            args.num_experts,
            args.moe_grouped_gemm,
            args.qk_layernorm,
            args.multi_latent_attention,
            args.moe_use_legacy_grouped_gemm,
            normalization=args.normalization,
            use_kitchen=config.use_kitchen,
        )


def model_provider(
    pre_process=True, post_process=True, vp_stage: Optional[int] = None
) -> Union[GPTModel, megatron.legacy.model.GPTModel]:
    """Builds the model.

    If you set the use_legacy_models to True, it will return the legacy GPT model and if not the mcore GPT model.

    Args:
        pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
        post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.


    Returns:
        Union[GPTModel, megatron.legacy.model.GPTModel]: The returned model
    """
    args = get_args()

    if has_nvidia_modelopt and modelopt_args_enabled(args):  # [ModelOpt]
        return model_provider_modelopt(pre_process, post_process)

    use_te = args.transformer_impl == "transformer_engine"

    if args.record_memory_history:
        torch.cuda.memory._record_memory_history(
            True,
            # keep 100,000 alloc/free events from before the snapshot
            trace_alloc_max_entries=100000,
            # record stack information for the trace events
            trace_alloc_record_context=True,
        )

        def oom_observer(device, alloc, device_alloc, device_free):
            # snapshot right after an OOM happened
            print('saving allocated state during OOM')
            snapshot = torch.cuda.memory._snapshot()
            from pickle import dump

            dump(
                snapshot,
                open(f"oom_rank-{torch.distributed.get_rank()}_{args.memory_snapshot_path}", 'wb'),
            )

        torch._C._cuda_attach_out_of_memory_observer(oom_observer)

    print_rank_0('building GPT model ...')
    # Experimental loading arguments from yaml
    if args.yaml_cfg is not None:
        config = core_transformer_config_from_yaml(args, "language_model")
    else:
        config = core_transformer_config_from_args(args)

    if args.use_legacy_models:
        model = megatron.legacy.model.GPTModel(
            config,
            num_tokentypes=0,
            parallel_output=True,
            pre_process=pre_process,
            post_process=post_process,
        )
    else:  # using core models
        if args.spec is not None:
            transformer_layer_spec = import_module(args.spec)
        else:
            if args.num_experts:
                # Define the decoder block spec
                transformer_layer_spec = get_gpt_decoder_block_spec(
                    config, use_transformer_engine=use_te, normalization=args.normalization, qk_l2_norm=args.qk_l2_norm, vp_stage=vp_stage
                )
            elif args.heterogeneous_layers_config_path is not None:
                transformer_layer_spec = get_gpt_heterogeneous_layer_spec(config, use_te)
            else:
                # Define the decoder layer spec
                transformer_layer_spec = _get_transformer_layer_spec(use_te, config)
        mtp_block_spec = None
        if args.mtp_num_layers is not None:
            if hasattr(transformer_layer_spec, 'layer_specs') and len(transformer_layer_spec.layer_specs) == 0:
                # Get the decoder layer spec explicitly if no decoder layer in the last stage,
                # Only happens with block spec (TransformerBlockSubmodules) when using MoE.
                transformer_layer_spec_for_mtp = _get_transformer_layer_spec(use_te, config)
            else:
                transformer_layer_spec_for_mtp = transformer_layer_spec
            mtp_block_spec = get_gpt_mtp_block_spec(
                config, transformer_layer_spec_for_mtp, use_transformer_engine=use_te, vp_stage=vp_stage
            )

        model = GPTModel(
            config=config,
            transformer_layer_spec=transformer_layer_spec,
            vocab_size=args.padded_vocab_size,
            max_sequence_length=args.max_position_embeddings,
            pre_process=pre_process,
            post_process=post_process,
            fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
            parallel_output=True,
            share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
            position_embedding_type=args.position_embedding_type,
            rotary_percent=args.rotary_percent,
            rotary_base=args.rotary_base,
            rope_scaling=args.use_rope_scaling,
            mtp_block_spec=mtp_block_spec,
            vp_stage=vp_stage,
        )

    return model


def get_batch(data_iterator):
    """Generate a batch."""

    # TODO: this is pretty hacky, find a better way
    if (not parallel_state.is_pipeline_first_stage(ignore_virtual=True)) and (
        not parallel_state.is_pipeline_last_stage(ignore_virtual=True)
    ):
        return None, None, None, None, None

    # get batches based on the TP rank you are on
    batch = get_batch_on_this_tp_rank(data_iterator)

    # slice batch along sequence dimension for context parallelism
    batch = get_batch_on_this_cp_rank(batch)

    return batch.values()


# define spiky loss as a loss that's 10x the max loss observed
SPIKY_LOSS_FACTOR = 10


def loss_func(
    loss_mask: torch.Tensor, output_tensor: torch.Tensor, model: Optional[GPTModel] = None
):
    """Loss function.

    Args:
        loss_mask (torch.Tensor): Used to mask out some portions of the loss
        output_tensor (torch.Tensor): The tensor with the losses
        model (GPTModel, optional): The model (can be wrapped)

    Returns:
        the loss scalar for this micro-batch
        the number of non-padded tokens in this microbatch
        a dict containing reporting metrics on the loss and number of tokens across
            the data parallel ranks
    """
    args = get_args()

    if has_nvidia_modelopt and modelopt_args_enabled(args):  # [ModelOpt]
        return loss_func_modelopt(loss_mask, output_tensor, model=model)

    losses = output_tensor.view(-1).float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses * loss_mask)

    # Check individual rank losses are not NaN prior to DP all-reduce.
    rerun_state_machine = get_rerun_state_machine()
    if args.check_for_nan_in_loss_and_grad:
        rerun_state_machine.validate_result(
            result=loss,
            rejection_func=torch.isnan,
            message="found NaN in local forward loss calculation",
            tolerance=0.0,  # forward pass calculations are determinisic
            fatal=True,
        )
        rerun_state_machine.validate_result(
            result=loss,
            rejection_func=torch.isinf,
            message="found Inf in local forward loss calculation",
            tolerance=0.0,  # forward pass calculations are determinisic
            fatal=True,
        )
    # Check for spiky loss
    if args.check_for_spiky_loss:
        rerun_state_machine.validate_result(
            result=loss,
            rejection_func=partial(
                rerun_state_machine.is_unexpectedly_large,
                threshold=SPIKY_LOSS_FACTOR,
                context="loss",
            ),
            message="Spiky loss",
            tolerance=0.0,  # forward pass calculations are determinisic
            fatal=False,
        )

    num_tokens = loss_mask.sum().clone().detach().to(torch.int)
    reporting_loss = torch.cat([loss.clone().detach().view(1), num_tokens.view(1)])

    return (loss, num_tokens, {'lm loss': reporting_loss})


def forward_step(data_iterator, model: GPTModel):
    """Forward training step.

    Args:
        data_iterator : Input data iterator
        model (GPTModel): The GPT Model
    """
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    global stimer
    with stimer(bdata=True):
        tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator)
    timers('batch-generator').stop()

    with stimer:
        if args.use_legacy_models:
            output_tensor = model(tokens, position_ids, attention_mask, labels=labels)
        else:
            output_tensor = model(
                tokens, position_ids, attention_mask, labels=labels, loss_mask=loss_mask
            )

    # [ModelOpt]: model is needed to access ModelOpt distillation losses
    return output_tensor, partial(loss_func, loss_mask, model=model)


def is_dataset_built_on_rank():
    return (
        parallel_state.is_pipeline_first_stage(ignore_virtual=True)
        or parallel_state.is_pipeline_last_stage(ignore_virtual=True)
    ) and parallel_state.get_tensor_model_parallel_rank() == 0


def core_gpt_dataset_config_from_args(args):
    tokenizer = get_tokenizer()

    # Sometimes --data-path is too long, instead we parse it from a file.
    blend: Optional[Tuple[List[str], Optional[List[float]]]]
    blend_per_split: Optional[List[Optional[Tuple[List[str], Optional[List[float]]]]]]
    blend, blend_per_split = get_blend_and_blend_per_split(args)

    return GPTDatasetConfig(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=blend,
        blend_per_split=blend_per_split,
        split=args.split,
        num_dataset_builder_threads=args.num_dataset_builder_threads,
        path_to_cache=args.data_cache_path,
        mmap_bin_files=args.mmap_bin_files,
        tokenizer=tokenizer,
        reset_position_ids=args.reset_position_ids,
        reset_attention_mask=args.reset_attention_mask,
        eod_mask_loss=args.eod_mask_loss,
        create_attention_mask=args.create_attention_mask_in_dataloader,
        object_storage_cache_path=args.object_storage_cache_path,
        mid_level_dataset_surplus=args.mid_level_dataset_surplus,
    )


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build the train test and validation datasets.

    Args:
        train_val_test_num_samples : A list containing the number of samples in train test and validation.
    """
    args = get_args()

    config = core_gpt_dataset_config_from_args(args)

    if args.sft:
        dataset_type = SFTDataset
    else:
        if args.mock_data:
            dataset_type = MockGPTDataset
        else:
            dataset_type = GPTDataset

    print_rank_0("> building train, validation, and test datasets for GPT ...")

    train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
        dataset_type, train_val_test_num_samples, is_dataset_built_on_rank, config
    ).build()

    print_rank_0("> finished creating GPT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    # Temporary for transition to core datasets
    train_valid_test_datasets_provider.is_distributed = True

    # Optionally enable inprocess restart on pretrain
    pretrain, store = inprocess_restart.maybe_wrap_for_inprocess_restart(pretrain)

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
        extra_args_provider=add_modelopt_args if has_nvidia_modelopt else None,
        store=store,
    )