arguments.py 4.69 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.


def add_modelopt_args(parser):
    """Add additional arguments for using TensorRT Model Optimizer (modelopt) features."""
    group = parser.add_argument_group(title="modelopt-generic")

    # Model and Checkpoint Compatibility
    group.add_argument(
        "--export-model-type",
        type=str,
        default="GPTModel",
        choices=["GPTModel", "MambaModel"],
        help="Model type to use in model_provider.",
    )
    group.add_argument(
        "--export-legacy-megatron",
        action="store_true",
        help="Export a legacy megatron-lm checkpoint.",
    )
    group.add_argument(
        "--export-te-mcore-model",
        action="store_true",
        help="Export a megatron-core transformer-engine checkpoint.",
    )
    group.add_argument(
        "--export-force-local-attention",
        action="store_true",
        help="Forcing local DotProductAttention; otherwise TEDotProductAttention is used.",
    )

    # Quantization
    group.add_argument(
        "--export-kv-cache-quant",
        action="store_true",
        help="Whether or not to perform KV-cache quantization.",
    )
    group.add_argument(
        "--export-real-quant-cfg",
        type=str,
        default="None",
        choices=["fp8_real_quant", "fp8_blockwise_real_quant", "None"],
        help="Specify a real quantization config from the supported choices.",
    )
    group.add_argument(
        "--export-quant-cfg",
        type=str,
        default=None,
        choices=[
            "int8_sq",
            "fp8",
            "fp8_real_quant",
            "fp8_blockwise",
            "fp8_blockwise_real_quant",
            "fp8_blockwise_32",
            "int4_awq",
            "w4a8_awq",
            "nvfp4",
            "None",
        ],
        help="Specify a quantization config from the supported choices.",
    )

    # Knowledge Distillation
    group.add_argument(
        '--export-kd-cfg',
        type=str,
        default=None,
        help='Path to distillation configuration yaml file.',
    )
    group.add_argument(
        '--export-kd-teacher-load',
        type=str,
        help='Path to checkpoint to load as distillation teacher.',
    )
    group.add_argument(
        '--export-kd-teacher-ckpt-format',
        type=str,
        default=None,
        choices=['torch', 'torch_dist', 'zarr', 'torch_dcp'],
        help="Checkpoint format of teacher model, if different from student's.",
    )

    # Speculative decoding
    group.add_argument(
        '--export-num-medusa-heads',
        type=int,
        default=0,
        help='Number of Medusa heads for speculative decoding.',
    )
    group.add_argument(
        '--export-eagle-algorithm',
        type=str,
        choices=['eagle1', 'eagle3', 'eagle-mtp'],
        default="eagle-mtp",
        help='Chosing the between different flavors of EAGLE algorithms.',
    )
    group.add_argument(
        '--export-num-eagle-layers',
        type=int,
        default=0,
        help='Number of EAGLE layers for speculative decoding.',
    )
    group.add_argument(
        '--export-draft-vocab-size',
        type=int,
        default=0,
        help='The reduced vocabulary size of the draft model.',
    )
    group.add_argument(
        '--export-num-mtp',
        type=int,
        default=0,
        help='Number of MTP modules for speculative decoding.',
    )
    group.add_argument(
        '--export-freeze-mtp',
        type=int,
        nargs="*",
        default=[],
        help='Index of MTP that will be frozen in training.',
    )



    # Finetuning
    group.add_argument(
        "--finetune-hf-dataset", type=str, default=None, help="HF dataset used for finetuning."
    )
    group.add_argument(
        "--finetune-data-split", type=str, default="train", help="HF dataset split used for finetuning."
    )

    # Special model architecture option
    group.add_argument(
        '--export-qk-l2-norm',
        action="store_true",
        help='Use Llama-4 L2Norm instead of normal LayerNorm/RMSNorm for QK normalization.',
    )
    group.add_argument(
        '--export-moe-apply-probs-on-input',
        action="store_true",
        help='Use Llama-4 expert scaling on input instead of output.',
    )

    return parser


def modelopt_args_enabled(args):
    """Check if any modelopt-related arguments are provided."""
    key_args_and_defaults = {
        "export_real_quant_cfg": "None",
        "export_quant_cfg": None,
        "export_kd_teacher_load": None,
        "export_num_medusa_heads": 0,
        "export_num_eagle_layers": 0,
    }
    for key, default in key_args_and_defaults.items():
        if hasattr(args, key) and getattr(args, key) != default:
            return True
    return False