communication.py 7.94 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Communications utilities."""


import torch

from megatron.core import parallel_state
from megatron.core import mpu


# TODO: use functions from megatron/p2p
def recv_from_prev_pipeline_rank_(recv_buffer=None):
    """Receive from previous pipeline stage and update the
    input buffer inplace."""
    if not mpu.is_pipeline_first_stage():
        assert recv_buffer is not None
        recv_prev_op = torch.distributed.P2POp(
            torch.distributed.irecv, recv_buffer,
            mpu.get_pipeline_model_parallel_prev_rank(), group=parallel_state.get_pipeline_model_parallel_group())
        reqs = torch.distributed.batch_isend_irecv([recv_prev_op])
        for req in reqs:
            req.wait()
        # To protect against race condition when using batch_isend_irecv().
        torch.cuda.synchronize()

# TODO: use functions from megatron/p2p
def send_to_next_pipeline_rank(tensor=None):
    """Send output to the next pipeline stage."""
    if not mpu.is_pipeline_last_stage():
        assert tensor is not None
        send_next_op = torch.distributed.P2POp(
            torch.distributed.isend, tensor,
            mpu.get_pipeline_model_parallel_next_rank(), group=parallel_state.get_pipeline_model_parallel_group())
        reqs = torch.distributed.batch_isend_irecv([send_next_op])
        for req in reqs:
            req.wait()
        # To protect against race condition when using batch_isend_irecv().
        torch.cuda.synchronize()



def _is_cuda(tensor):
    """Check if a tensor is not none and is cuda."""
    assert tensor is not None
    assert tensor.is_cuda



def _is_cuda_contiguous(tensor):
    """Check if a tensor is not none, is cuda, and is contiguous."""
    _is_cuda(tensor)
    assert tensor.is_contiguous()



def broadcast_from_last_pipeline_stage(size, dtype, tensor=None):
    """Broadcast a tensor from last pipeline stage to all ranks."""

    is_last_stage = mpu.is_pipeline_last_stage()
    # If first stage and last state are the same, then there is no
    # pipeline parallelism and no need to communicate.
    if mpu.is_pipeline_first_stage() and is_last_stage:
        return tensor

    if is_last_stage:
        _is_cuda_contiguous(tensor)
    else:
        tensor = torch.empty(size,
                             dtype=dtype,
                             device=torch.cuda.current_device())
    # Get the group and corresponding source rank.
    src = mpu.get_pipeline_model_parallel_last_rank()
    group = mpu.get_pipeline_model_parallel_group()
    torch.distributed.broadcast(tensor, src, group)

    return tensor


def _send_and_recv_from_last_to_first_pipeline_stage(tensor=None):
    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()

    if is_last_stage or is_first_stage:
        if is_first_stage:
            recv_prev_op = torch.distributed.P2POp(
                torch.distributed.irecv, tensor,
                mpu.get_pipeline_model_parallel_last_rank(), group=parallel_state.get_pipeline_model_parallel_group())
            reqs = torch.distributed.batch_isend_irecv([recv_prev_op])
        elif is_last_stage:
            send_next_op = torch.distributed.P2POp(
                torch.distributed.isend, tensor,
                mpu.get_pipeline_model_parallel_first_rank(), group=parallel_state.get_pipeline_model_parallel_group())
            reqs = torch.distributed.batch_isend_irecv([send_next_op])

        for req in reqs:
            req.wait()
        # To protect against race condition when using batch_isend_irecv().
        torch.cuda.synchronize()

        return tensor


def broadcast_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Broadcast tensor values from last stage into the first stage."""

    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    # If first stage and last state are the same, then there is no
    # pipeline parallelism and no need to communicate.
    if is_first_stage and is_last_stage:
        return tensor
    # Only first and last stage pipeline stages need to be involved.
    if is_last_stage or is_first_stage:
        if is_last_stage:
            _is_cuda_contiguous(tensor)
        else:
            tensor = torch.empty(size,
                                 dtype=dtype,
                                 device=torch.cuda.current_device())
        tensor = _send_and_recv_from_last_to_first_pipeline_stage(tensor)
    else:
        tensor = None

    return tensor



def copy_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Copy tensor values from last stage into the first stage.
    Note that the input tensor is updated in place."""

    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    # If first stage and last state are the same, then there is no
    # pipeline parallelism and no need to communicate.
    if is_first_stage and is_last_stage:
        return
    # Only first and last stage pipeline stages need to be involved.
    if is_last_stage or is_first_stage:
        _is_cuda(tensor)
        is_contiguous = tensor.is_contiguous()
        if is_contiguous:
            tensor_ = tensor
        else:
            if is_last_stage:
                tensor_ = tensor.contiguous()
            else:
                tensor_ = torch.empty(size,
                                      dtype=dtype,
                                      device=torch.cuda.current_device())
        tensor_ = _send_and_recv_from_last_to_first_pipeline_stage(tensor_)
        # Update the first stage tensor
        if is_first_stage and not is_contiguous:
            tensor[...] = tensor_



def broadcast_tensor(size, dtype, tensor=None, rank=0, data_parallel=False):
    """Given size and type of a tensor on all ranks and the tensor value
    only on a specific rank, broadcast from that rank to all other ranks.

    Args:
        data_parallel (bool): Broadcast across a single data parallel model replica.
    """
    if data_parallel:
        rank = parallel_state.get_model_parallel_src_rank()

    if torch.distributed.get_rank() == rank:
        _is_cuda_contiguous(tensor)
    else:
        tensor = torch.empty(size,
                             dtype=dtype,
                             device=torch.cuda.current_device())

    group = None
    if data_parallel:
        group = parallel_state.get_model_parallel_group()

    torch.distributed.broadcast(tensor, rank, group=group)

    return tensor



def broadcast_list(size, dtype, list_values=None, rank=0, data_parallel=False):
    """Broadcast a list of values with a given type.

    Args:
        data_parallel (bool): Broadcast across a single data parallel model replica.
    """

    tensor = None

    if data_parallel:
        if parallel_state.get_model_parallel_src_rank() == torch.distributed.get_rank():
            tensor = torch.tensor(list_values, dtype=dtype,
                                  device=torch.cuda.current_device())

        rank = parallel_state.get_model_parallel_src_rank()
    else:
        if torch.distributed.get_rank() == rank:
            tensor = torch.tensor(list_values, dtype=dtype,
                                  device=torch.cuda.current_device())

    return broadcast_tensor(size, dtype, tensor=tensor, rank=rank, data_parallel=data_parallel)



def broadcast_int_list(size, int_list=None, rank=0, data_parallel=False):
    """Broadcast a list of integer values.

    Args:
        data_parallel (bool): Broadcast across a single data parallel model replica.
    """

    return broadcast_list(size, torch.int64, list_values=int_list, rank=rank, data_parallel=data_parallel)



def broadcast_float_list(size, float_list=None, rank=0, data_parallel=False):
    """Broadcast a list of float values.

    Args:
        data_parallel (bool): Broadcast across a single data parallel model replica.
    """

    return broadcast_list(size, torch.float32, list_values=float_list,
                          rank=rank, data_parallel=data_parallel)