quantize.py 7.31 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Sample Generate GPT."""
import functools
import os
import sys
import warnings

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")))

import modelopt
import modelopt.torch.quantization as mtq
import torch
from datasets import load_dataset
from packaging.version import Version
from tqdm import tqdm

from megatron.post_training.arguments import add_modelopt_args
from megatron.post_training.checkpointing import load_modelopt_checkpoint
from megatron.post_training.generate import simple_generate
from megatron.post_training.model_provider import model_provider
from megatron.post_training.utils import report_current_memory_info
from megatron.training import get_args, get_model, get_tokenizer, initialize_megatron
from megatron.training.checkpointing import save_checkpoint
from megatron.training.utils import print_rank_0, unwrap_model

warnings.filterwarnings('ignore')


QUANT_CFG_CHOICES = {
    "int8_sq": mtq.INT8_SMOOTHQUANT_CFG,
    "fp8": mtq.FP8_DEFAULT_CFG,
    "fp8_real_quant": mtq.FP8_DEFAULT_CFG,
    "fp8_blockwise": mtq.FP8_2D_BLOCKWISE_WEIGHT_ONLY_CFG,
    "int4_awq": mtq.INT4_AWQ_CFG,
    "w4a8_awq": mtq.W4A8_AWQ_BETA_CFG,
    "nvfp4": mtq.NVFP4_DEFAULT_CFG,
}


def add_text_generate_ptq_args(parser):
    """Add additional arguments for ModelOpt text generation PTQ."""
    group = parser.add_argument_group(title='ModelOpt text generation ptq')
    group.add_argument(
        "--calib-size", type=int, default=512, help="Samples to use for ptq calibration."
    )
    parser.add_argument(
        "--prompts",
        type=str,
        default=("Hello!|Born in California, Soyer trained as a"),
        help="Input texts. Please use | to separate different batches.",
    )
    parser.add_argument(
        "--references",
        type=str,
        default="",
        help="Reference texts. Please use | to separate different batches.",
    )
    parser.add_argument(
        "--pretrained-model-path", type=str, default=None, help="HuggingFace pretrained model"
    )
    add_modelopt_args(parser)
    return parser


def check_arguments():
    """Checking user arguments."""
    args = get_args()
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print_rank_0("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()

    if hasattr(args, 'moe_grouped_gemm') and args.moe_grouped_gemm == True:
        print_rank_0("WARNING: Forcing moe_grouped_gemm to False for PTQ and export.")
        args.moe_grouped_gemm = False


def get_modelopt_torch_quantization_config():
    """Return a quantization config."""
    args = get_args()
    mtq_config = QUANT_CFG_CHOICES[args.export_quant_cfg]
    fp8_config = {"enable": True, "num_bits": (4, 3), "axis": None}
    fp4_config = {
        "num_bits": (2, 1),
        "block_sizes": {-1: 16, "type": "dynamic", "scale_bits": (4, 3)},
        "axis": None,
        "enable": True,
    }
    if "fp8" == args.export_quant_cfg:
        # Enable Medusa heads and kv-cache quantization
        mtq_config["quant_cfg"]["*medusa_heads**"] = fp8_config
    if "fp4" in args.export_quant_cfg:
        # Enable Medusa heads and kv-cache quantization
        mtq_config["quant_cfg"]["*medusa_heads**"] = fp4_config
    if "awq" in args.export_quant_cfg:
        weight_quantizer = mtq_config["quant_cfg"]["*weight_quantizer"]  # type: ignore
        if isinstance(weight_quantizer, list):
            weight_quantizer = weight_quantizer[0]
        weight_quantizer["block_sizes"][-1] = 128
    if args.export_kv_cache_quant:
        mtq_config["quant_cfg"]["*linear_qkv.output_quantizer"] = fp8_config

    return mtq_config


def get_calib_dataloader(calib_size=512, max_sequence_length=512):
    """Return a dataloader for calibration."""
    dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
    text_column = "article"

    calib_size = min(len(dataset), calib_size)
    for i in range(calib_size):
        yield dataset[i][text_column][:max_sequence_length]


if __name__ == "__main__":
    initialize_megatron(
        extra_args_provider=add_text_generate_ptq_args,
        args_defaults={
            'tokenizer_type': 'HuggingFaceTokenizer',
            'no_load_rng': True,
            'no_load_optim': True,
        },
    )

    check_arguments()

    args = get_args()

    tokenizer = get_tokenizer()._tokenizer
    model = get_model(functools.partial(model_provider, parallel_output=True), wrap_with_ddp=False)

    report_current_memory_info()

    if args.load is not None:
        load_modelopt_checkpoint(model, strict=not args.untie_embeddings_and_output_weights)
        print_rank_0("Done loading checkpoint")

    if args.pretrained_model_path is not None:
        from modelopt.torch.export import import_mcore_gpt_from_hf

        unwrapped_model = unwrap_model(model)[0]
        workspace_dir = os.environ.get("MLM_WORK_DIR", "/tmp")
        import_mcore_gpt_from_hf(unwrapped_model, args.pretrained_model_path, workspace_dir)

    def _custom_prompt_forward_loop_func(model):
        all_prompts = args.prompts.split("|")
        if args.references == "":
            all_references = [None] * len(all_prompts)
        else:
            all_references = args.references.split("|")

        for idx, prompt in tqdm(enumerate(all_prompts), disable=torch.distributed.get_rank()):
            tokens = tokenizer(prompt, return_tensors="pt")
            generated_ids = simple_generate(model, tokens.input_ids.cuda(), osl=32)
            generated_texts = tokenizer.batch_decode(generated_ids)
            print_rank_0("{}".format(generated_texts))
            if all_references[idx] is not None:
                assert all_references[idx] == generated_texts[0], all_references[idx]

    def _hf_dataset_forword_loop_func(model):
        dataloader = get_calib_dataloader(args.calib_size)
        for prompt in tqdm(dataloader, total=args.calib_size, disable=torch.distributed.get_rank()):
            tokens = tokenizer(prompt, return_tensors="pt")
            generated_ids = simple_generate(model, tokens.input_ids.cuda(), osl=1)

    unwrapped_model = unwrap_model(model)[0]

    if args.export_quant_cfg in QUANT_CFG_CHOICES:
        print_rank_0("Quantizing the model...")
        mtq_config = get_modelopt_torch_quantization_config()
        ptq_forward_loop_func = _hf_dataset_forword_loop_func
        if hasattr(unwrapped_model, "calibration_mode"):
            unwrapped_model.calibration_mode = True
            mtq.quantize(unwrapped_model, mtq_config, ptq_forward_loop_func)
            unwrapped_model.calibration_mode = False
        else:
            mtq.quantize(unwrapped_model, mtq_config, ptq_forward_loop_func)
        if "real_quant" in args.export_quant_cfg:
            mtq.compress(unwrapped_model)

    print_rank_0(f"Fake Quantized Model:\n {unwrapped_model}")

    if torch.distributed.get_rank() == 0:
        for k, v in unwrapped_model.state_dict().items():
            if "amax" not in k:
                continue
            if isinstance(v, torch.Tensor):
                print("{:80} {:32} max {:.4e}".format(k, str(v.shape), torch.max(torch.abs(v))))
            else:
                print("{:80}".format(k))

    _custom_prompt_forward_loop_func(unwrapped_model)

    if args.save is not None and args.export_quant_cfg in QUANT_CFG_CHOICES:
        save_checkpoint(1, model, None, None, 0)