finetune.py 20.9 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.

"""Supervised Finetuning GPT."""
import itertools
import os
import sys
from functools import partial
from typing import Any, Dict, Optional

import jsonlines

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")))

import datasets
import torch
import transformers

from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.models.gpt import GPTModel
from megatron.post_training.arguments import add_modelopt_args
from megatron.post_training.model_provider import model_provider
from megatron.post_training.non_loss_data_func import report_draft_acceptance_length
from megatron.training import get_args, get_timers, get_tokenizer, pretrain
from megatron.training.utils import (
    average_losses_across_data_parallel_group,
    get_batch_on_this_cp_rank,
    get_ltor_masks_and_position_ids,
    print_rank_0,
    unwrap_model,
)

REMOVE_THINK_CHAT_TEMPLATE = (
    "{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}"
)


def get_eos_id():
    tokenizer = get_tokenizer()
    hf_tokenizer = tokenizer._tokenizer

    if hf_tokenizer.eos_token == "<|eot_id|>":
        return 128001
    if hf_tokenizer.eos_token == "<|eot|>":
        return 200001

    return hf_tokenizer.eos_token_id


class SFTDataset(torch.utils.data.Dataset):

    hf_dataset_to_kwargs = {
        "Open-Orca/OpenOrca": {"split": "train"},
        "Open-Orca/SlimOrca": {"split": "train"},
        "nvidia/HelpSteer2": {"split": "train"},
        "nvidia/Daring-Anteater": {"split": "train"},
        "Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-Filtered": {"split": "train"},
        "/hf-local/modelopt/AA-Synthetic-Scout": {"split": "train"},
        "/hf-local/modelopt/Multilingual": {"split": "train"},
    }

    hf_dataset_to_conversation = {
        "Open-Orca/OpenOrca": lambda data: SFTDataset._to_conversation(
            data["question"], data["response"]
        ),
        "Open-Orca/SlimOrca": lambda data: SFTDataset._sharegpt_to_openai_conversations(data),
        "nvidia/HelpSteer2": lambda data: SFTDataset._to_conversation(
            data["prompt"], data["response"]
        ),
        "nvidia/Daring-Anteater": lambda data: SFTDataset._sharegpt_to_openai_conversations(data),
        "Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-Filtered": lambda data: SFTDataset._sharegpt_to_openai_conversations(
            data
        ),
        "/hf-local/modelopt/AA-Synthetic-Scout": lambda data: SFTDataset._special_to_openai_conversations(
            data
        ),
    }

    hf_dataset_to_prompt_template = {
        "Open-Orca/OpenOrca": "{{ messages['question'] + ' ' + messages['response'] + ' ' }}",
        "nvidia/HelpSteer2": "{{ messages['prompt'] + ' ' + messages['response'] + ' ' }}",
    }

    def __init__(
        self,
        num_packed_samples: int,
        data_path: Optional[str],
        tokenizer: transformers.PreTrainedTokenizerBase,
        seq_length: int,
        hf_dataset: Optional[str] = None,
        num_medusa_heads: int = 0,
        num_shards: int = 1,
        shard_index: int = 0,
    ):
        """A simple dataset implementation for supervised fine-tuning.

        The raw data is processed and packed to an indexed dataset on the fly. Users
        specify the total number of packed samples and the dataloader (or sampler)
        access the packed dataset by indices. When the packed dataset length is smaller
        than the index, the packing process fetches the raw data in a cyclic fashion
        until the packed dataset has sufficient length.

        Args:
            data_path: Path to the json or jsonl file
            num_packed_samples: total number of packed samples (cyclic access)
            tokenizer: hf tokenizer
            seq_length: max sequence length
            hf_dataset: not supported yet
            num_medusa_heads: number of medusa heads will incease the sample sequence
                length for training additional medusa prediction heads
        """
        if not isinstance(tokenizer, transformers.PreTrainedTokenizerBase):
            raise ValueError("SFTDataset only supports transformers.PreTrainedTokenizerBase!")

        self.num_packed_samples = num_packed_samples
        self.data_path = data_path
        self.tokenizer = tokenizer
        self.seq_length = seq_length
        self.hf_dataset = hf_dataset
        self.data_transformation = lambda data: data
        self.num_shards = num_shards
        self.shard_index = shard_index
        self.num_medusa_heads = num_medusa_heads
        self.indexed_dataset = []
        self._raw_sample_index = 0

        # [WAR]: For DeepSeek-V3/R1 tokenizer, we modify the chat_template such that the <think>
        # tokens are preserved for supervised learning.
        self.tokenizer.chat_template = self.tokenizer.chat_template.replace(
            REMOVE_THINK_CHAT_TEMPLATE, ""
        )

        if data_path is not None:
            if data_path.endswith(".json"):
                self._raw_samples = json.load(open(data_path))
            elif data_path.endswith(".jsonl"):
                with jsonlines.open(data_path, mode='r') as reader:
                    self._raw_samples = [obj for obj in reader]
            else:
                raise ValueError("data_path must be json or jsonl")
        elif self.hf_dataset is not None:
            hf_dataset_kwargs = SFTDataset.hf_dataset_to_kwargs.get(
                self.hf_dataset, {"split": "train"}
            )
            self._raw_samples = datasets.load_dataset(self.hf_dataset, **hf_dataset_kwargs)
            self._raw_samples = self._raw_samples.shard(
                num_shards=self.num_shards, index=shard_index
            )

            print(
                "Rank {:3}/{:3} creates SFT data shard {:3}/{:3} with {:10} raw samples".format(
                    torch.distributed.get_rank(),
                    torch.distributed.get_world_size(),
                    self.shard_index,
                    self.num_shards,
                    len(self._raw_samples),
                ),
                flush=True,
            )

        else:
            raise ValueError("Either hf_dataset or data_path must be provided!")

        if self.tokenizer.chat_template is None:
            self.tokenizer.chat_template = SFTDataset.hf_dataset_to_prompt_template
        elif self.hf_dataset is not None:
            self.data_transformation = SFTDataset.hf_dataset_to_conversation.get(
                self.hf_dataset, lambda data: data
            )

        if self.tokenizer.chat_template is None:
            raise ValueError("No valid chat template!")

    def __len__(self):
        return self.num_packed_samples

    def __getitem__(self, idx):
        """Get the idx packed data.

        The packed data index is different from the raw data index where a packed sample
        of sequence-length may require concatenting multiple raw data. When all raw data
        are used up, the last packed data is throw away, and we have a packed dataset
        in memory. The packed data index may exceed the length of the packed dataset
        which will just wrap in a cyclic fashion.
        """
        idx = idx // self.num_shards

        while idx >= len(self.indexed_dataset):
            packed_samples = self._process_and_pack_example()
            if packed_samples is None:
                break
            else:
                self.indexed_dataset.append(packed_samples)
            if len(self.indexed_dataset) % 10000 == 0:
                print(
                    "Rank {:3}/{:3} requests {:10}/{:10} packed SFT sample".format(
                        torch.distributed.get_rank(),
                        torch.distributed.get_world_size(),
                        idx,
                        len(self.indexed_dataset),
                    ),
                    flush=True,
                )

        idx = idx % len(self.indexed_dataset)
        torch_sample = {}
        for key, val in self.indexed_dataset[idx].items():
            torch_sample[key] = torch.LongTensor(val)
        return torch_sample

    def _process_and_pack_example(self):
        """Process multiple raw data and pack them into fixed sequence length."""
        required_packed_tokens = self.seq_length + 1 + self.num_medusa_heads
        current_packed_samples = []
        current_packed_samples_token_count = 0

        while current_packed_samples_token_count < required_packed_tokens:
            if self._raw_sample_index >= len(self._raw_samples):
                return None
            raw_sample = self._raw_samples[self._raw_sample_index]
            self._raw_sample_index += 1
            processed_sample = self._process_example(raw_sample)
            if processed_sample is not None:
                current_packed_samples.append(processed_sample)
                current_packed_samples_token_count += processed_sample["token_count"]

        packed_samples = {}

        for key in ['input_ids', 'loss_mask']:
            packed_samples[key] = list(
                itertools.chain.from_iterable([obj[key] for obj in current_packed_samples])
            )

        for key in ['token_count']:
            packed_samples[key] = [obj[key] for obj in current_packed_samples]

        return packed_samples

    def _process_example(self, example: Dict[str, Any]):
        """Apply the chat template and compute the answer-only loss mask."""
        if not isinstance(example, Dict):
            raise ValueError("The sample must be a Dict but got {}".format(type(example)))

        # Several things can happen here after the transformation is applied:
        #
        # 1. If the transformation is identity transformation, then either the chat data
        #    is already in OpenAI chat format or there is a custom prompt template used.
        # 2. Otherwise, the tokenizer must have a default chat template and we are either
        #    converting the ShareGPT chat data or standard SFT data to OpenAI chat data.
        example = self.data_transformation(example)

        # Check if this is OpenAI chat data?
        conversations = example.get("conversations", None)
        if conversations is None:
            conversations = example.get("messagess", None)

        # We don't use the data if there is no assistant reply or the conversation that
        # starts with the assistant.
        if conversations is not None:
            example = conversations
            if len(conversations) < 2 or example[0]["role"] == "assistant":
                return None

        # We always add eos between samples for training purpose.
        input_ids = self.tokenizer.apply_chat_template(example)
        current_loss_mask = [1] * len(input_ids)
        input_ids = input_ids + [get_eos_id()]
        current_loss_mask += [0]

        assert len(input_ids) == len(current_loss_mask)

        if len(input_ids) > self.seq_length:
            input_ids = input_ids[: self.seq_length]
            current_loss_mask = current_loss_mask[: self.seq_length]

        processed_example = {
            'input_ids': input_ids,
            'loss_mask': current_loss_mask,
            'token_count': len(input_ids),
        }
        return processed_example

    @classmethod
    def _to_conversation(cls, question, response):
        msg_question = {"role": "user", "content": question}
        msg_response = {"role": "assistant", "content": response}
        return {"conversations": [msg_question, msg_response]}

    @classmethod
    def _sharegpt_to_openai_conversations(cls, data):
        role_mapping = {
            "user": "user",
            "User": "user",
            "human": "user",
            "assistant": "assistant",
            "Assistant": "assistant",
            "gpt": "assistant",
            "system": "system",
            "System": "system",
        }
        processed_data = {"conversations": []}
        for msg in data["conversations"]:
            role = role_mapping[msg["from"]]
            content = msg["value"]
            processed_data["conversations"].append({"role": role, "content": content})
        return processed_data

    @classmethod
    def _special_to_openai_conversations(cls, data):
        processed_data = {"conversations": data["input"]["messages"]}
        return processed_data


def train_valid_test_sft_datasets_provider(train_val_test_num_samples):
    """Build the train test and validation datasets.

    Args:
        train_val_test_num_samples : A list containing the number of samples
            in train test and validation.
    """
    print_rank_0("> building train, validation, and test SFT datasets ...")
    args = get_args()
    tokenizer = get_tokenizer()

    if not isinstance(tokenizer._tokenizer, transformers.PreTrainedTokenizerBase):
        raise ValueError("SFTDataset only supports transformers.PreTrainedTokenizerBase!")

    if args.micro_batch_size > 1:
        raise ValueError("SFTDataloader only supports micro_batch_size=1.")

    # Providing additional Medusa arguments to prepare the data
    kwargs = {
        "tokenizer": tokenizer._tokenizer,
        "seq_length": args.seq_length,
        # Optional kwargs
        "hf_dataset": args.finetune_hf_dataset,
        "num_shards": mpu.get_data_parallel_world_size(),
        "shard_index": mpu.get_data_parallel_rank(),
        "num_medusa_heads": args.export_num_medusa_heads,
    }

    data_path = [
        args.train_data_path[0] if args.train_data_path else None,
        args.valid_data_path[0] if args.valid_data_path else None,
        args.test_data_path[0] if args.test_data_path else None,
    ]

    train_ds = SFTDataset(train_val_test_num_samples[0], data_path[0], **kwargs)
    valid_ds = SFTDataset(train_val_test_num_samples[1], data_path[1], **kwargs)
    test_ds = SFTDataset(train_val_test_num_samples[2], data_path[2], **kwargs)

    print_rank_0("> finished creating SFT datasets ...")

    return train_ds, valid_ds, test_ds


def get_batch(data_iterator):
    """Generate a batch."""
    # TODO: this is pretty hacky, find a better way
    if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
        return None, None, None, None, None

    args = get_args()

    # Items and their type.
    keys = ["input_ids", "loss_mask"]
    datatype = torch.int64

    # Broadcast data since only TP rank-0 has the data_iterator.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = tensor_parallel.broadcast_data(keys, data, datatype)

    # Unpack the data received.
    tokens_ = data_b["input_ids"]
    tokens = tokens_[:, 0 : 0 + args.seq_length].contiguous()
    labels = tokens_[:, 1 : 1 + args.seq_length].contiguous()
    answer_only_loss_mask = data_b["loss_mask"][:, 1 : 1 + args.seq_length].contiguous()

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens, get_eos_id(), args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss
    )
    loss_mask = loss_mask * answer_only_loss_mask.to(dtype=loss_mask.dtype)

    # Medusa label and loss_mask preparation
    #
    # Explanation:
    #
    # To predict 1 + k labels, an input tokens need to have additional k tokens. Given
    # sequence length s, then overall s + 1 + k tokens are fed from the dataset.
    #
    # inputs = tokens[0:s]
    # labels = tokens[1:1+s]
    # kth medusa head labels = tokens[1+k:1+k+s]
    #
    # Examples: (s=5, k=2)
    #
    #                   | 0 1 2 3 4 5 6 7 |
    # ------------------|-----------------|
    # tokens            | x x x x x x x x |
    # inputs            | x x x x x       |
    # lm_head labels    |   x x x x x     | (next token prediction)
    # 1st medusa labels |     x x x x x   | (next-next token prediction)
    # 2nd medusa labels |       x x x x x | (next-next-next token prediction)
    #
    for i in range(args.export_num_medusa_heads):
        new_labels = tokens_[:, 2 + i : 2 + i + args.seq_length]
        new_loss_mask = data_b["loss_mask"][:, 2 + i : 2 + i + args.seq_length].to(
            dtype=loss_mask.dtype
        )
        labels = torch.cat((labels, new_labels), dim=-1)
        loss_mask = torch.cat((loss_mask, new_loss_mask), dim=-1)

    if args.export_num_medusa_heads > 0:
        loss_mask = loss_mask.view(args.export_num_medusa_heads + 1, -1)

    # if args.export_num_eagle_layers > 0:
    #    loss_mask = loss_mask[:, 1:]

    # MTP label and loss_mask preparation
    # Examples: (s=5, k=2)
    #
    #                   | 0 1 2 3 4 5 |
    # ------------------|-------------|
    # tokens            | x x x x x x |
    # inputs            | x x x x x   |
    # lm_head labels    |   x x x x x | (next token prediction)
    # mtp_0 labels      |     x x x x | (next-next token prediction)
    # mtp_1 labels      |       x x x | (next-next-next token prediction)
    #
    # mtp_i_labels = labels[:, 1 + i :]
    # So we do not need to prepare extra labels for mtp
    # Modelopt will shift labels and reuse them
    #
    # loss_mask
    if args.export_num_mtp > 0:
        loss_masks = []
        for i in range(args.export_num_mtp):
            new_loss_mask = data_b["loss_mask"][:, 2 + i : 1 + args.seq_length].to(
                dtype=loss_mask.dtype, device=loss_mask.device
            )
            if i in args.export_freeze_mtp:
                new_loss_mask = torch.zeros_like(
                    new_loss_mask, dtype=loss_mask.dtype, device=loss_mask.device
                )
            loss_masks.append(new_loss_mask)
        loss_mask = torch.cat(loss_masks, dim=-1)

    labels = labels.contiguous()
    loss_mask = loss_mask.contiguous()

    batch = {
        "tokens": tokens,
        "labels": labels,
        "loss_mask": loss_mask,
        "attention_mask": attention_mask,
        "position_ids": position_ids,
    }
    # slice batch along sequence dimension for context parallelism
    batch = get_batch_on_this_cp_rank(batch)

    return batch.values()


def _mask_loss(output_tensor, loss_mask, mp_reduce=False):
    """Apply mask to the unreduced loss tensor."""
    args = get_args()

    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()

    if args.context_parallel_size > 1:
        loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)])
        torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
        loss = loss[0] / loss[1]
    else:
        loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    if mp_reduce and args.tensor_model_parallel_size > 1:
        # KD loss requires extra all-reduce to ensure same values across MP-TP partitions.
        loss = torch.sum(tensor_parallel.gather_from_tensor_model_parallel_region(loss.reshape(1)))

    return loss


def _allreduce_loss(loss):
    """Reduce loss for reporting purposes."""
    args = get_args()

    # Check individual rank losses are not NaN prior to DP all-reduce.
    if args.check_for_nan_in_loss_and_grad:
        global_rank = torch.distributed.get_rank()
        assert not loss.isnan(), (
            f'Rank {global_rank}: found NaN in local forward loss calculation. '
            f'Device: {torch.cuda.current_device()}, node: {os.uname()[1]}'
        )

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss * args.context_parallel_size, averaged_loss[0]


def loss_func(loss_mask: torch.Tensor, model: GPTModel, output_tensor: torch.Tensor):
    """Loss function (with KD Loss support).

    Args:
        loss_mask (Tensor): Used to mask out some portions of the loss
        model (GPTModel): The model (can be wrapped)
        output_tensor (Tensor): The tensor with the losses
    """
    args = get_args()

    # Unwrap for both Distillation and LANA
    model = unwrap_model(model)

    # Standard lm loss
    output_tensor = output_tensor.float()  # cache
    loss_lm = _mask_loss(output_tensor, loss_mask)
    loss_lm, loss_lm_avg = _allreduce_loss(loss_lm)
    loss, report = loss_lm, {'lm loss': loss_lm_avg}

    return loss, report


def non_loss_data_func(model: GPTModel):
    """Callback to compute the acceptance length."""
    report_draft_acceptance_length(model)


def forward_step(data_iterator, model: GPTModel):
    """Forward training step.

    Args:
        data_iterator: Input data iterator
        model: The GPT Model
    """
    timers = get_timers()

    # Get the batch.
    timers("batch-generator", log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator)
    timers("batch-generator").stop()

    output_tensor = model(tokens, position_ids, attention_mask, labels=labels)

    return output_tensor, partial(loss_func, loss_mask, model)


if __name__ == "__main__":
    pretrain(
        train_valid_test_sft_datasets_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        extra_args_provider=add_modelopt_args,
        args_defaults={"tokenizer_type": "HuggingFaceTokenizer"},
        non_loss_data_func=non_loss_data_func,
    )