image_processing.py 7.33 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved. Except portions as noted which are Copyright (c) 2023 OpenGVLab and licensed under the MIT license found in LICENSE.
from torchvision import transforms as T
from torchvision.transforms import Compose
from torchvision.transforms.functional import InterpolationMode


IMAGENET_PIXEL_MEAN = [0.485, 0.456, 0.406]
IMAGENET_PIXEL_STD = [0.229, 0.224, 0.225]
SIGLIP_PIXEL_MEAN = [0.5, 0.5, 0.5]
SIGLIP_PIXEL_STD = [0.5, 0.5, 0.5]
CLIP_PIXEL_MEAN = [0.48145466, 0.4578275, 0.40821073]
CLIP_PIXEL_STD = [0.26862954, 0.26130258, 0.27577711]
RADIO_G_PIXEL_MEAN = [0.4850, 0.4560, 0.4060]
RADIO_G_PIXEL_STD = [0.2230, 0.2240, 0.2250]


pixel_statistics = {
    "clip": (CLIP_PIXEL_MEAN, CLIP_PIXEL_STD),
    "siglip": (SIGLIP_PIXEL_MEAN, SIGLIP_PIXEL_STD),
    "internvit": (IMAGENET_PIXEL_MEAN, IMAGENET_PIXEL_STD),
    "radio": (CLIP_PIXEL_MEAN, CLIP_PIXEL_STD),
    "radio-g": (RADIO_G_PIXEL_MEAN, RADIO_G_PIXEL_STD),
    "cradio-g": (CLIP_PIXEL_MEAN, CLIP_PIXEL_STD),
    "internvit300M": (IMAGENET_PIXEL_MEAN, IMAGENET_PIXEL_STD),
    "huggingface": (SIGLIP_PIXEL_MEAN, SIGLIP_PIXEL_STD),
}


# From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L685
# Copyright (c) 2023 OpenGVLab.
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def find_closest_area_weighted_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    """
    Find the best number of tiles based on the aspect ratio and the area covered by the tiles.
    """
    best_factor = float('-inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        factor_based_on_area_n_ratio = (
            min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6) *
            min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio))
        if factor_based_on_area_n_ratio > best_factor:
            best_factor = factor_based_on_area_n_ratio
            best_ratio = ratio
    return best_ratio


class ImageTransform:
    """Image transformation."""

    def __init__(self, input_size, vision_model_type):
        self._transform = _build_transform(input_size, vision_model_type)
        self._vision_model_type = vision_model_type

    def __call__(self, img, img_h, img_w, use_tiling=False, max_num_tiles=1, use_thumbnail=False, augment=False, find_closest_aspect_ratio_fn=find_closest_aspect_ratio):
        assert not augment, "Image augmentation not implemented."
        if use_tiling:
            assert img_h == img_w, "dynamic tiling expects equal tile height and width"
            imgs = dynamic_preprocess(
                img, min_num=1, max_num=max_num_tiles, image_size=img_h, use_thumbnail=use_thumbnail,
                find_closest_aspect_ratio_fn=find_closest_aspect_ratio_fn)
            imgs = [self._transform(img) for img in imgs]
        else:
            imgs = [self._transform(img)]

        return imgs


# From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L702
# Copyright (c) 2023 OpenGVLab.
def dynamic_preprocess(
    image, min_num=1, max_num=6, image_size=448, use_thumbnail=False,
    find_closest_aspect_ratio_fn=find_closest_aspect_ratio):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio_fn(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


# Based on https://github.com/openai/CLIP/blob/dcba3cb2e2827b402d2701e7e1c7d9fed8a20ef1/clip/clip.py#L79
# and https://github.com/OpenGVLab/InternVL/blob/aa521e6eb1df4cf153aa4118fcf13e673c055d46/internvl_chat/internvl/train/dataset.py#L276
def _build_transform(input_size, vision_model_type):
    if vision_model_type in ("siglip", "internvit", "internvit300M", "radio", "radio-g", "cradio-g"):
        pixel_mean, pixel_std = pixel_statistics[vision_model_type]

        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=pixel_mean, std=pixel_std)
        ])
    elif vision_model_type == "clip":
        pixel_mean, pixel_std = pixel_statistics[vision_model_type]

        transform = Compose([
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.ToTensor(),
            T.Normalize(mean=pixel_mean, std=pixel_std),
        ])
    elif vision_model_type.startswith("hf://"):
        from megatron.core.models.huggingface.module import get_hf_model_type

        model_type = get_hf_model_type(vision_model_type)
        if "siglip" in model_type:
            from transformers.models.siglip.image_processing_siglip import SiglipImageProcessor

            processor = SiglipImageProcessor(size={"height": input_size, "width": input_size})

            def transform(x):
                x = x.convert("RGB") if x.mode != "RGB" else x
                x = processor(x, return_tensors="pt")
                return x["pixel_values"][0]
        else:
            raise NotImplementedError(f"image processing not defined for huggingface model {vision_model_type}")
    else:
        raise NotImplementedError(f"image processing not defined for vision model {vision_model_type}")

    return transform