prepare_dataset.py 4.51 KB
Newer Older
huaerkl's avatar
v1.0  
huaerkl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) Facebook, Inc. and its affiliates.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from multiprocessing import Pool

import os
from collections import defaultdict
from itertools import starmap

import torch
from npy_append_array import NpyAppendArray
from tqdm import tqdm

from data_utils import dump_speaker_f0_stat, F0Stat, load_f0
from fairseq.data.codedataset import (
    ExpressiveCodeDataConfig,
    parse_manifest,
    F0_FRAME_SPACE,
    align_f0_to_durations,
)
from fairseq.tasks.speech_ulm_task import UnitDictionary


def load_meta(meta_path, split):
    config = ExpressiveCodeDataConfig(meta_path)
    manifest_path = config.manifests[split]
    dictionary = UnitDictionary(n_units=config.n_units)
    audio_paths, codes, durs, speakers = parse_manifest(manifest_path, dictionary)
    return config, audio_paths, codes, durs, speakers


def _align_f0(f0, dur, ratio, frm_tol=5):
    if f0 is None:
        seg_f0 = torch.zeros_like(dur, dtype=torch.float)
    else:
        seg_f0 = align_f0_to_durations(f0, dur, ratio, tol=frm_tol * ratio)
    return seg_f0.numpy()  # try a hacky stuff


def align_f0(path_to_f0, audio_paths, durs, ratio, mp=False):
    chunk_size = 2000
    num_procs = 40
    iterable = ((path_to_f0[p], d, ratio) for p, d in zip(audio_paths, durs))

    seg_f0s = []
    if mp:
        with Pool(num_procs) as pool:
            iterator = tqdm(
                pool.istarmap(_align_f0, iterable, chunk_size),
                desc="align f0",
                total=len(durs),
            )
            for seg_f0 in iterator:
                seg_f0s.append(torch.from_numpy(seg_f0).float())
    else:
        iterator = tqdm(starmap(_align_f0, iterable), desc="align f0", total=len(durs))
        for seg_f0 in iterator:
            seg_f0s.append(torch.from_numpy(seg_f0).float())

    return seg_f0s


def prepare_seg_data(config, audio_paths, codes, durs, speakers, path_to_f0):
    ratio = config.code_hop_size / (config.sampling_rate * F0_FRAME_SPACE)
    seg_f0s = align_f0(path_to_f0, audio_paths, durs, ratio)
    data = {
        "codes": codes,
        "duration": durs,
        "f0": seg_f0s,
        "speaker": speakers,
        "path": audio_paths,
    }
    return data


def dump_seg_data(data, out_prefix):
    key_targs = {
        "codes": f"{out_prefix}.code.npy",
        "duration": f"{out_prefix}.dur.npy",
        "f0": f"{out_prefix}.f0.npy",
    }
    for key, targ in key_targs.items():
        assert not os.path.exists(targ)
        npaa = NpyAppendArray(targ)
        for utt_data in tqdm(data[key], desc=f"dumping {key}"):
            npaa.append(utt_data.numpy())

    assert not os.path.exists(f"{out_prefix}.path.txt")
    with open(f"{out_prefix}.path.txt", "w") as f:
        for x in data["path"]:
            f.write(f"{str(x)}\n")

    assert not os.path.exists(f"{out_prefix}.leng.txt")
    with open(f"{out_prefix}.leng.txt", "w") as f:
        for x in data["codes"]:
            f.write(f"{len(x)}\n")

    assert not os.path.exists(f"{out_prefix}.speaker.txt")
    with open(f"{out_prefix}.speaker.txt", "w") as f:
        for x in data["speaker"]:
            f.write(f"{str(x)}\n")

    print(f"wrote to files with prefix {out_prefix}")


def main(meta_path, f0_dir, splits, nshards_list):
    speaker_to_stat = defaultdict(F0Stat)
    if len(nshards_list) == 1:
        nshards_list = nshards_list * len(splits)
    else:
        assert len(nshards_list) == len(splits)

    for split, nshards in zip(splits, nshards_list):
        config, audio_paths, codes, durs, speakers = load_meta(meta_path, split)
        path_to_f0 = load_f0(f"{f0_dir}/{split}", nshards)

        # segment-level data
        data = prepare_seg_data(config, audio_paths, codes, durs, speakers, path_to_f0)
        dump_seg_data(data, config.manifests[split])

        # speaker f0
        for audio_path, speaker in tqdm(zip(audio_paths, speakers)):
            f0 = path_to_f0[audio_path]
            speaker_to_stat[speaker].update(f0)
        dump_speaker_f0_stat(speaker_to_stat, config.manifests[split])


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("meta_path")
    parser.add_argument("f0_dir", help="out_dir from preprocess_f0")
    parser.add_argument("--splits", nargs="+", default=["train", "valid"])
    parser.add_argument(
        "--nshards_list", type=int, nargs="+", default=[20], help="number of f0 shards"
    )
    args = parser.parse_args()
    print(args)

    main(**vars(args))