synthesize.py 12.6 KB
Newer Older
huaerkl's avatar
v1.0  
huaerkl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import logging
import argparse
import random
import sys
import os
import numpy as np
import torch
import soundfile as sf
import shutil
import librosa
import json
from pathlib import Path
from tqdm import tqdm
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT

dir_path = os.path.dirname(__file__)
resynth_path = os.path.dirname(os.path.abspath(__file__)) + "/speech-resynthesis"
sys.path.append(resynth_path)

from models import CodeGenerator
from inference import scan_checkpoint, load_checkpoint, generate
from emotion_models.pitch_predictor import load_ckpt as load_pitch_predictor
from emotion_models.duration_predictor import load_ckpt as load_duration_predictor
from dataset import load_audio, MAX_WAV_VALUE, parse_style, parse_speaker, EMOV_SPK2ID, EMOV_STYLE2ID


logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s] %(message)s',
    handlers=[logging.FileHandler('debug.log'), logging.StreamHandler()]
)
logger = logging.getLogger(__name__)


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


def parse_generation_file(fname):
    lines = open(fname).read()
    lines = lines.split('\n')

    results = {}
    for l in lines:
        if len(l) == 0:
            continue

        if l[0] == 'H':
            parts = l[2:].split('\t')
            if len(parts) == 2:
                sid, utt = parts
            else:
                sid, _, utt = parts
            sid = int(sid)
            utt = [int(x) for x in utt.split()]
            if sid in results:
                results[sid]['H'] = utt
            else:
                results[sid] = {'H': utt}
        elif l[0] == 'S':
            sid, utt = l[2:].split('\t')
            sid = int(sid)
            utt = [x for x in utt.split()]
            if sid in results:
                results[sid]['S'] = utt
            else:
                results[sid] = {'S': utt}
        elif l[0] == 'T':
            sid, utt = l[2:].split('\t')
            sid = int(sid)
            utt = [int(x) for x in utt.split()]
            if sid in results:
                results[sid]['T'] = utt
            else:
                results[sid] = {'T': utt}

    for d, result in results.items():
        if 'H' not in result:
            result['H'] = result['S']

    return results


def get_code_to_fname(manifest, tokens):
    if tokens is None:
        code_to_fname = {}
        with open(manifest) as f:
            for line in f:
                line = line.strip()
                fname, code = line.split()
                code = code.replace(',', ' ')
                code_to_fname[code] = fname

        return code_to_fname

    with open(manifest) as f:
        fnames = [l.strip() for l in f.readlines()]
        root = Path(fnames[0])
        fnames = fnames[1:]
        if '\t' in fnames[0]:
            fnames = [x.split()[0] for x in fnames]

    with open(tokens) as f:
        codes = [l.strip() for l in f.readlines()]

    code_to_fname = {}
    for fname, code in zip(fnames, codes):
        code = code.replace(',', ' ')
        code_to_fname[code] = str(root / fname)

    return root, code_to_fname


def code_to_str(s):
    k = ' '.join([str(x) for x in s])
    return k


def get_praat_f0(audio, rate=16000, interp=False):
    frame_length = 20.0
    to_pad = int(frame_length / 1000 * rate) // 2

    f0s = []
    for y in audio.astype(np.float64):
        y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
        signal = basic.SignalObj(y_pad, rate)
        pitch = pYAAPT.yaapt(signal, **{'frame_length': frame_length, 'frame_space': 5.0, 'nccf_thresh1': 0.25,
                                        'tda_frame_length': 25.0})
        if interp:
            f0s += [pitch.samp_interp[None, None, :]]
        else:
            f0s += [pitch.samp_values[None, None, :]]

    f0 = np.vstack(f0s)
    return f0


def generate_from_code(generator, h, code, spkr=None, f0=None, gst=None, device="cpu"):
    batch = {
        'code': torch.LongTensor(code).to(device).view(1, -1),
    }
    if spkr is not None:
        batch['spkr'] = spkr.to(device).unsqueeze(0)
    if f0 is not None:
        batch['f0'] = f0.to(device)
    if gst is not None:
        batch['style'] = gst.to(device)

    with torch.no_grad():
        audio, rtf = generate(h, generator, batch)
        audio = librosa.util.normalize(audio / 2 ** 15)

    return audio


@torch.no_grad()
def synth(argv, interactive=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--result-path', type=Path, help='Translation Model Output', required=True)
    parser.add_argument('--data', type=Path, help='a directory with the files: src.tsv, src.km, trg.tsv, trg.km, orig.tsv, orig.km')
    parser.add_argument("--orig-tsv", default="/checkpoint/felixkreuk/datasets/emov/manifests/emov_16khz/data.tsv")
    parser.add_argument("--orig-km", default="/checkpoint/felixkreuk/datasets/emov/manifests/emov_16khz/core_manifests/emov_16khz_km_100/data.km")

    parser.add_argument('--checkpoint-file', type=Path, help='Generator Checkpoint', required=True)
    parser.add_argument('--dur-model', type=Path, help='a token duration prediction model (if tokens were deduped)')
    parser.add_argument('--f0-model', type=Path, help='a f0 prediction model')

    parser.add_argument('-s', '--src-emotion', default=None)
    parser.add_argument('-t', '--trg-emotion', default=None)
    parser.add_argument('-N', type=int, default=10)
    parser.add_argument('--split', default="test")

    parser.add_argument('--outdir', type=Path, default=Path('results'))
    parser.add_argument('--orig-filename', action='store_true')

    parser.add_argument('--device', type=int, default=0)
    a = parser.parse_args(argv)

    seed = 52
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    if os.path.isdir(a.checkpoint_file):
        config_file = os.path.join(a.checkpoint_file, 'config.json')
    else:
        config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json')
    with open(config_file) as f:
        data = f.read()
    json_config = json.loads(data)
    h = AttrDict(json_config)

    generator = CodeGenerator(h).to(a.device)
    if os.path.isdir(a.checkpoint_file):
        cp_g = scan_checkpoint(a.checkpoint_file, 'g_')
    else:
        cp_g = a.checkpoint_file
    state_dict_g = load_checkpoint(cp_g)
    generator.load_state_dict(state_dict_g['generator'])

    generator.eval()
    generator.remove_weight_norm()

    dur_models = {
        "neutral":   load_duration_predictor(f"{a.dur_model}/neutral.ckpt"),
        "amused":    load_duration_predictor(f"{a.dur_model}/amused.ckpt"),
        "disgusted": load_duration_predictor(f"{a.dur_model}/disgusted.ckpt"),
        "angry":     load_duration_predictor(f"{a.dur_model}/angry.ckpt"),
        "sleepy":    load_duration_predictor(f"{a.dur_model}/sleepy.ckpt"),
    }
    logger.info(f"loaded duration prediction model from {a.dur_model}")

    f0_model = load_pitch_predictor(a.f0_model).to(a.device)
    logger.info(f"loaded f0 prediction model from {a.f0_model}")

    # we need to know how to map code back to the filename
    # (if we want the original files names as output)
    results = parse_generation_file(a.result_path)
    _, src_code_to_fname = get_code_to_fname(f'{a.data}/files.{a.split}.{a.src_emotion}', f'{a.data}/{a.split}.{a.src_emotion}')
    _, tgt_code_to_fname = get_code_to_fname(f'{a.data}/files.{a.split}.{a.trg_emotion}', f'{a.data}/{a.split}.{a.trg_emotion}')

    # we need the originals (before dedup) to get the ground-truth durations
    orig_tsv = open(a.orig_tsv, 'r').readlines()
    orig_tsv_root, orig_tsv = orig_tsv[0].strip(), orig_tsv[1:]
    orig_km = open(a.orig_km, 'r').readlines()
    fname_to_idx = {orig_tsv_root + "/" + line.split("\t")[0]: i for i, line in enumerate(orig_tsv)}

    outdir = a.outdir
    outdir.mkdir(parents=True, exist_ok=True)
    (outdir / '0-source').mkdir(exist_ok=True)
    (outdir / '1-src-tokens-src-style-src-f0').mkdir(exist_ok=True)
    (outdir / '2-src-tokens-trg-style-src-f0').mkdir(exist_ok=True)
    (outdir / '2.5-src-tokens-trg-style-src-f0').mkdir(exist_ok=True)
    (outdir / '3-src-tokens-trg-style-pred-f0').mkdir(exist_ok=True)
    (outdir / '4-gen-tokens-trg-style-pred-f0').mkdir(exist_ok=True)
    (outdir / '5-target').mkdir(exist_ok=True)

    N = 0
    results = list(results.items())
    random.shuffle(results)
    for i, (sid, result) in tqdm(enumerate(results)):
        N += 1
        if N > a.N and a.N != -1:
            break

        if '[' in result['S'][0]:
            result['S'] = result['S'][1:]
        if '_' in result['S'][-1]:
            result['S'] = result['S'][:-1]
        src_ref = src_code_to_fname[code_to_str(result['S'])]
        trg_ref = tgt_code_to_fname[code_to_str(result['T'])]

        src_style, trg_style = None, None
        src_spkr, trg_spkr = None, None
        src_f0 = None
        src_audio = (load_audio(src_ref)[0] / MAX_WAV_VALUE) * 0.95
        trg_audio = (load_audio(trg_ref)[0] / MAX_WAV_VALUE) * 0.95
        src_audio = torch.FloatTensor(src_audio).unsqueeze(0).cuda()
        trg_audio = torch.FloatTensor(trg_audio).unsqueeze(0).cuda()

        src_spkr = parse_speaker(src_ref, h.multispkr)
        src_spkr = src_spkr if src_spkr in EMOV_SPK2ID else random.choice(list(EMOV_SPK2ID.keys()))
        src_spkr = EMOV_SPK2ID[src_spkr]
        src_spkr = torch.LongTensor([src_spkr])
        trg_spkr = parse_speaker(trg_ref, h.multispkr)
        trg_spkr = trg_spkr if trg_spkr in EMOV_SPK2ID else random.choice(list(EMOV_SPK2ID.keys()))
        trg_spkr = EMOV_SPK2ID[trg_spkr]
        trg_spkr = torch.LongTensor([trg_spkr])

        src_style = EMOV_STYLE2ID[a.src_emotion]
        src_style = torch.LongTensor([src_style]).cuda()
        trg_style_str = a.trg_emotion
        trg_style = EMOV_STYLE2ID[a.trg_emotion]
        trg_style = torch.LongTensor([trg_style]).cuda()

        src_tokens = list(map(int, orig_km[fname_to_idx[src_ref]].strip().split(" ")))
        src_tokens = torch.LongTensor(src_tokens).unsqueeze(0)
        src_tokens_dur_pred = torch.LongTensor(list(map(int, result['S']))).unsqueeze(0)
        src_tokens_dur_pred = dur_models[trg_style_str].inflate_input(src_tokens_dur_pred)
        gen_tokens = torch.LongTensor(result['H']).unsqueeze(0)
        gen_tokens = dur_models[trg_style_str].inflate_input(gen_tokens)
        trg_tokens = torch.LongTensor(result['T']).unsqueeze(0)
        trg_tokens = dur_models[trg_style_str].inflate_input(trg_tokens)

        src_f0 = get_praat_f0(src_audio.unsqueeze(0).cpu().numpy())
        src_f0 = torch.FloatTensor(src_f0).cuda()

        pred_src_f0 = f0_model.inference(torch.LongTensor(src_tokens).to(a.device), src_spkr, trg_style).unsqueeze(0)
        pred_src_dur_pred_f0 = f0_model.inference(torch.LongTensor(src_tokens_dur_pred).to(a.device), src_spkr, trg_style).unsqueeze(0)
        pred_gen_f0 = f0_model.inference(torch.LongTensor(gen_tokens).to(a.device), src_spkr, trg_style).unsqueeze(0)
        pred_trg_f0 = f0_model.inference(torch.LongTensor(trg_tokens).to(a.device), src_spkr, trg_style).unsqueeze(0)

        if a.orig_filename:
            path = src_code_to_fname[code_to_str(result['S'])]
            sid = str(sid) + "__" + Path(path).stem
        shutil.copy(src_code_to_fname[code_to_str(result['S'])], outdir / '0-source' / f'{sid}.wav')

        audio = generate_from_code(generator, h, src_tokens, spkr=src_spkr, f0=src_f0, gst=src_style, device=a.device)
        sf.write(outdir / '1-src-tokens-src-style-src-f0' / f'{sid}.wav', audio, samplerate=h.sampling_rate)

        audio = generate_from_code(generator, h, src_tokens, spkr=src_spkr, f0=src_f0, gst=trg_style, device=a.device)
        sf.write(outdir / '2-src-tokens-trg-style-src-f0' / f'{sid}.wav', audio, samplerate=h.sampling_rate)

        audio = generate_from_code(generator, h, src_tokens_dur_pred, spkr=src_spkr, f0=src_f0, gst=trg_style, device=a.device)
        sf.write(outdir / '2.5-src-tokens-trg-style-src-f0' / f'{sid}.wav', audio, samplerate=h.sampling_rate)

        audio = generate_from_code(generator, h, src_tokens_dur_pred, spkr=src_spkr, f0=pred_src_dur_pred_f0, gst=trg_style, device=a.device)
        sf.write(outdir / '3-src-tokens-trg-style-pred-f0' / f'{sid}.wav', audio, samplerate=h.sampling_rate)

        audio = generate_from_code(generator, h, gen_tokens, spkr=src_spkr, f0=pred_gen_f0, gst=trg_style, device=a.device)
        sf.write(outdir / '4-gen-tokens-trg-style-pred-f0' / f'{sid}.wav', audio, samplerate=h.sampling_rate)

        shutil.copy(tgt_code_to_fname[code_to_str(result['T'])], outdir / '5-target' / f'{sid}.wav')

    logger.info("Done.")


if __name__ == '__main__':
    synth(sys.argv[1:])