images.py 7.73 KB
Newer Older
huaerkl's avatar
v1.0  
huaerkl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from functools import partial
from dataclasses import dataclass
from typing import Callable, Dict, Optional
from timm.models.layers import to_2tuple
from fairseq.tasks import FairseqTask
from examples.data2vec.models.mae import get_2d_sincos_pos_embed, PatchEmbed
from .base import (
    D2vModalityConfig,
    ModalitySpecificEncoder,
    get_alibi_bias,
    MaskSeed,
)
from .modules import (
    BlockEncoder,
    Decoder2d,
    FixedPositionalEncoder,
    TransformerDecoder,
    EncDecTransformerDecoder,
)
from examples.data2vec.data.modality import Modality


@dataclass
class D2vImageConfig(D2vModalityConfig):
    type: Modality = Modality.IMAGE

    input_size: int = 224
    in_chans: int = 3
    patch_size: int = 16
    embed_dim: int = 768

    alibi_dims: int = 2
    alibi_distance: str = "manhattan"

    fixed_positions: bool = True

    transformer_decoder: bool = False
    enc_dec_transformer: bool = False


class ImageEncoder(ModalitySpecificEncoder):

    modality_cfg: D2vImageConfig

    def __init__(
        self,
        modality_cfg: D2vImageConfig,
        embed_dim: int,
        make_block: Callable[[float, Optional[int], Optional[int]], nn.ModuleList],
        norm_layer: Callable[[int], nn.LayerNorm],
        layer_norm_first: bool,
        alibi_biases: Dict,
        task: Optional[FairseqTask],
    ):

        img_size = to_2tuple(modality_cfg.input_size)
        patch_size = to_2tuple(modality_cfg.patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])

        local_encoder = PatchEmbed(
            modality_cfg.input_size,
            modality_cfg.patch_size,
            modality_cfg.in_chans,
            modality_cfg.embed_dim,
        )

        w = local_encoder.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        if modality_cfg.embed_dim != embed_dim:
            local_encoder = nn.Sequential(
                local_encoder,
                nn.Linear(modality_cfg.embed_dim, embed_dim),
            )

        project_features = nn.Identity()

        pos_embed = nn.Parameter(
            torch.zeros(1, num_patches, embed_dim), requires_grad=False
        )

        side_n = int(num_patches ** 0.5)

        emb = get_2d_sincos_pos_embed(
            pos_embed.shape[-1],
            side_n,
            cls_token=False,
        )
        pos_embed.data.copy_(torch.from_numpy(emb).float().unsqueeze(0))
        fixed_positional_encoder = (
            FixedPositionalEncoder(pos_embed) if modality_cfg.fixed_positions else None
        )

        dpr = np.linspace(
            modality_cfg.start_drop_path_rate,
            modality_cfg.end_drop_path_rate,
            modality_cfg.prenet_depth,
        )

        context_encoder = BlockEncoder(
            nn.ModuleList(make_block(dpr[i]) for i in range(modality_cfg.prenet_depth)),
            norm_layer(embed_dim) if not layer_norm_first else None,
            layer_norm_first,
            modality_cfg.prenet_layerdrop,
            modality_cfg.prenet_dropout,
        )

        if modality_cfg.transformer_decoder:
            if modality_cfg.enc_dec_transformer:
                decoder = EncDecTransformerDecoder(modality_cfg.decoder, embed_dim)
            else:
                dec_enc = BlockEncoder(
                    nn.ModuleList(
                        make_block(0, modality_cfg.decoder.decoder_dim, 8)
                        for _ in range(modality_cfg.decoder.decoder_layers)
                    ),
                    None,
                    layer_norm_first,
                    0,
                    0,
                )
                decoder = TransformerDecoder(modality_cfg.decoder, embed_dim, dec_enc)
        else:
            decoder = (
                Decoder2d(modality_cfg.decoder, embed_dim, side_n, side_n)
                if modality_cfg.decoder is not None
                else None
            )

        alibi_bias_fn = partial(
            get_alibi_bias,
            alibi_biases=alibi_biases,
            heads=modality_cfg.num_alibi_heads,
            dims=modality_cfg.alibi_dims,
            distance=modality_cfg.alibi_distance,
        )

        super().__init__(
            modality_cfg=modality_cfg,
            embed_dim=embed_dim,
            local_encoder=local_encoder,
            project_features=project_features,
            fixed_positional_encoder=fixed_positional_encoder,
            relative_positional_encoder=None,
            context_encoder=context_encoder,
            decoder=decoder,
            get_alibi_bias=alibi_bias_fn,
        )

    def reset_parameters(self):
        super().reset_parameters()
        if self.decoder is not None:
            self.decoder.reset_parameters()

    @torch.no_grad()
    def patchify(self, imgs):
        """
        imgs: (N, 3, H, W)
        x: (N, L, patch_size**2 *3)
        """
        p = self.modality_cfg.patch_size
        h = w = imgs.shape[2] // p
        x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
        x = torch.einsum("nchpwq->nhwpqc", x)
        x = x.reshape(shape=(imgs.shape[0], h * w, p ** 2 * 3))

        return x

    @torch.no_grad()
    def unpatchify(self, x):
        """
        x: (N, L, patch_size**2 *3)
        imgs: (N, 3, H, W)
        """
        p = self.modality_cfg.patch_size
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
        x = torch.einsum("nhwpqc->nchpwq", x)
        imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
        return imgs

    def compute_mask(
        self,
        x,
        padding_mask,
        mask_seed: Optional[MaskSeed],
        apply,
        shape=None,
        precomputed_mask=None,
    ):
        mlen = self.modality_cfg.mask_length
        if mlen <= 1:
            return super().compute_mask(
                x, padding_mask, mask_seed, apply, precomputed_mask
            )

        if precomputed_mask is not None:
            mask = precomputed_mask
        else:
            from fairseq.data.data_utils import compute_block_mask_2d

            if shape is not None:
                B, L, D = shape
            else:
                B, L, D = x.shape

            mask = compute_block_mask_2d(
                shape=(B, L),
                mask_prob=self.modality_cfg.mask_prob,
                mask_length=self.modality_cfg.mask_length,
                mask_prob_adjust=self.modality_cfg.mask_prob_adjust,
                inverse_mask=self.modality_cfg.inverse_mask,
                require_same_masks=True,
                mask_dropout=self.modality_cfg.mask_dropout,
            )

        mask_info = self.make_maskinfo(x, mask, shape)
        if apply:
            x = self.apply_mask(x, mask_info)

        return x, mask_info

    def decoder_input(self, x, mask_info):
        if (
            not self.modality_cfg.transformer_decoder
            or not self.modality_cfg.enc_dec_transformer
        ):
            return super().decoder_input(x, mask_info)

        inp_drop = self.modality_cfg.decoder.input_dropout
        if inp_drop > 0:
            x = F.dropout(x, inp_drop, training=self.training, inplace=True)

        kv = x[:, self.modality_cfg.num_extra_tokens :]

        assert self.fixed_positional_encoder is not None
        pos = self.fixed_positional_encoder(x, None).expand(x.size(0), -1, -1)

        mask = mask_info.mask.bool()
        if self.modality_cfg.decoder.add_positions_all:
            kv = kv + pos[~mask].view(kv.shape)

        q = pos[mask].view(x.size(0), -1, x.size(-1))

        return q, kv