alphaEqn.H 5.73 KB
Newer Older
shunbo's avatar
shunbo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
{
    word alphaScheme("div(phi,alpha)");
    word alpharScheme("div(phirb,alpha)");

    surfaceScalarField phir
    (
        IOobject
        (
            "phir",
            runTime.timeName(),
            mesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE
        ),
        mixture.cAlpha()*mag(phi/mesh.magSf())*mixture.nHatf()
    );

    for (int gCorr=0; gCorr<nAlphaCorr; gCorr++)
    {
        // Create the limiter to be used for all phase-fractions
        scalarField allLambda(mesh.nFaces(), 1.0);

        // Split the limiter into a surfaceScalarField
        slicedSurfaceScalarField lambda
        (
            IOobject
            (
                "lambda",
                mesh.time().timeName(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE,
                false
            ),
            mesh,
            dimless,
            allLambda,
            false   // Use slices for the couples
        );


        // Create the complete convection flux for alpha1
        surfaceScalarField alphaPhi1
        (
            fvc::flux
            (
                phi,
                alpha1,
                alphaScheme
            )
          + fvc::flux
            (
                -fvc::flux(-phir, alpha2, alpharScheme),
                alpha1,
                alpharScheme
            )
          + fvc::flux
            (
                -fvc::flux(-phir, alpha3, alpharScheme),
                alpha1,
                alpharScheme
            )
        );

        // Create the bounded (upwind) flux for alpha1
        surfaceScalarField alphaPhi1BD
        (
            upwind<scalar>(mesh, phi).flux(alpha1)
        );

        // Calculate the flux correction for alpha1
        alphaPhi1 -= alphaPhi1BD;

        // Calculate the limiter for alpha1
        if (LTS)
        {
            const volScalarField& rDeltaT =
                fv::localEulerDdt::localRDeltaT(mesh);

            MULES::limiter
            (
                allLambda,
                rDeltaT,
                geometricOneField(),
                alpha1,
                alphaPhi1BD,
                alphaPhi1,
                zeroField(),
                zeroField(),
                oneField(),
                zeroField()
            );
        }
        else
        {
            MULES::limiter
            (
                allLambda,
                1.0/runTime.deltaT().value(),
                geometricOneField(),
                alpha1,
                alphaPhi1BD,
                alphaPhi1,
                zeroField(),
                zeroField(),
                oneField(),
                zeroField()
            );
        }

        alphaPhi1 = alphaPhi1BD + lambda*alphaPhi1;

        // Reset allLambda to 1.0
        allLambda = 1.0;

        // Create the complete flux for alpha2
        surfaceScalarField alphaPhi2
        (
            fvc::flux
            (
                phi,
                alpha2,
                alphaScheme
            )
          + fvc::flux
            (
                -fvc::flux(phir, alpha1, alpharScheme),
                alpha2,
                alpharScheme
            )
        );

        // Create the bounded (upwind) flux for alpha2
        surfaceScalarField alphaPhi2BD
        (
            upwind<scalar>(mesh, phi).flux(alpha2)
        );

        // Calculate the flux correction for alpha2
        alphaPhi2 -= alphaPhi2BD;

        // Further limit the limiter for alpha2
        if (LTS)
        {
            const volScalarField& rDeltaT =
                fv::localEulerDdt::localRDeltaT(mesh);

            MULES::limiter
            (
                allLambda,
                rDeltaT,
                geometricOneField(),
                alpha2,
                alphaPhi2BD,
                alphaPhi2,
                zeroField(),
                zeroField(),
                oneField(),
                zeroField()
            );
        }
        else
        {
            MULES::limiter
            (
                allLambda,
                1.0/runTime.deltaT().value(),
                geometricOneField(),
                alpha2,
                alphaPhi2BD,
                alphaPhi2,
                zeroField(),
                zeroField(),
                oneField(),
                zeroField()
            );
        }

        // Construct the limited fluxes
        alphaPhi2 = alphaPhi2BD + lambda*alphaPhi2;

        // Solve for alpha1
        solve(fvm::ddt(alpha1) + fvc::div(alphaPhi1));

        // Create the diffusion coefficients for alpha2<->alpha3
        volScalarField Dc23(D23*max(alpha3, scalar(0))*pos0(alpha2));
        volScalarField Dc32(D23*max(alpha2, scalar(0))*pos0(alpha3));

        // Add the diffusive flux for alpha3->alpha2
        alphaPhi2 -= fvc::interpolate(Dc32)*mesh.magSf()*fvc::snGrad(alpha1);

        // Solve for alpha2
        fvScalarMatrix alpha2Eqn
        (
            fvm::ddt(alpha2)
          + fvc::div(alphaPhi2)
          - fvm::laplacian(Dc23 + Dc32, alpha2)
        );
        alpha2Eqn.solve();

        // Construct the complete mass flux
        rhoPhi =
              alphaPhi1*(rho1 - rho3)
            + (alphaPhi2 + alpha2Eqn.flux())*(rho2 - rho3)
            + phi*rho3;

        alpha3 = 1.0 - alpha1 - alpha2;
    }

    Info<< "Air phase volume fraction = "
        << alpha1.weightedAverage(mesh.V()).value()
        << "  Min(" << alpha1.name() << ") = " << min(alpha1).value()
        << "  Max(" << alpha1.name() << ") = " << max(alpha1).value()
        << endl;

    Info<< "Liquid phase volume fraction = "
        << alpha2.weightedAverage(mesh.V()).value()
        << "  Min(" << alpha2.name() << ") = " << min(alpha2).value()
        << "  Max(" << alpha2.name() << ") = " << max(alpha2).value()
        << endl;
}