createFields.H 3.28 KB
Newer Older
shunbo's avatar
shunbo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include "readGravitationalAcceleration.H"

word continuousPhaseName
(
    IOdictionary
    (
        IOobject
        (
            "transportProperties",
            runTime.constant(),
            mesh,
            IOobject::MUST_READ
        )
    ).get<word>("continuousPhase")
);

Info<< "Reading field U\n" << endl;
volVectorField Uc
(
    IOobject
    (
        IOobject::groupName("U", continuousPhaseName),
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::AUTO_WRITE
    ),
    mesh
);

Info<< "Reading field p\n" << endl;
volScalarField p
(
    IOobject
    (
        "p",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::AUTO_WRITE
    ),
    mesh
);


Info<< "Reading/calculating continuous-phase face flux field phic\n"
    << endl;

surfaceScalarField phic
(
    IOobject
    (
        IOobject::groupName("phi", continuousPhaseName),
        runTime.timeName(),
        mesh,
        IOobject::READ_IF_PRESENT,
        IOobject::AUTO_WRITE
    ),
    linearInterpolate(Uc) & mesh.Sf()
);

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, pimple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());

Info<< "Creating turbulence model\n" << endl;

singlePhaseTransportModel continuousPhaseTransport(Uc, phic);

dimensionedScalar rhocValue
(
    IOobject::groupName("rho", continuousPhaseName),
    dimDensity,
    continuousPhaseTransport
);

volScalarField rhoc
(
    IOobject
    (
        rhocValue.name(),
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::AUTO_WRITE
    ),
    mesh,
    rhocValue
);

volScalarField muc
(
    IOobject
    (
        IOobject::groupName("mu", continuousPhaseName),
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::AUTO_WRITE
    ),
    rhoc*continuousPhaseTransport.nu()
);

Info << "Creating field alphac\n" << endl;
// alphac must be constructed before the cloud
// so that the drag-models can find it
volScalarField alphac
(
    IOobject
    (
        IOobject::groupName("alpha", continuousPhaseName),
        runTime.timeName(),
        mesh,
        IOobject::READ_IF_PRESENT,
        IOobject::AUTO_WRITE
    ),
    mesh,
    dimensionedScalar(dimless, Zero)
);

const word kinematicCloudName
(
    args.getOrDefault<word>("cloud", "kinematicCloud")
);

Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;
basicKinematicTypeCloud kinematicCloud
(
    kinematicCloudName,
    rhoc,
    Uc,
    muc,
    g
);

// Particle fraction upper limit
scalar alphacMin
(
    1.0
  - (
        kinematicCloud.particleProperties().subDict("constantProperties")
       .get<scalar>("alphaMax")
    )
);

// Update alphac from the particle locations
alphac = max(1.0 - kinematicCloud.theta(), alphacMin);
alphac.correctBoundaryConditions();

surfaceScalarField alphacf("alphacf", fvc::interpolate(alphac));

surfaceScalarField alphaPhic
(
    IOobject::groupName
    (
        "alphaPhi",
        continuousPhaseName
    ),
    alphacf*phic
);


autoPtr<DPMIncompressibleTurbulenceModel<singlePhaseTransportModel>>
continuousPhaseTurbulence
(
    DPMIncompressibleTurbulenceModel<singlePhaseTransportModel>::New
    (
        alphac,
        Uc,
        alphaPhic,
        phic,
        continuousPhaseTransport
    )
);