eval.py 4.87 KB
Newer Older
1
#!/usr/bin/env python3
2
3
4
5
6
7
"""Evaluate the lightning module by loading the checkpoint, the SentencePiece model, and the global_stats.json.

Example:
python eval.py --model-type tedlium3 --checkpoint-path ./experiments/checkpoints/epoch=119-step=254999.ckpt
    --dataset-path ./datasets/tedlium --sp-model-path ./spm_bpe_500.model
"""
8
9
import logging
import pathlib
10
from argparse import ArgumentParser, RawTextHelpFormatter
11
12
13

import torch
import torchaudio
14
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3
15
from librispeech.lightning import LibriSpeechRNNTModule
16
from mustc.lightning import MuSTCRNNTModule
17
18
19
from tedlium3.lightning import TEDLIUM3RNNTModule


20
logger = logging.getLogger(__name__)
21
22
23
24
25
26


def compute_word_level_distance(seq1, seq2):
    return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split())


27
def run_eval_subset(model, dataloader, subset):
28
29
30
31
32
33
34
35
36
37
    total_edit_distance = 0
    total_length = 0
    with torch.no_grad():
        for idx, (batch, transcripts) in enumerate(dataloader):
            actual = transcripts[0]
            predicted = model(batch)
            total_edit_distance += compute_word_level_distance(actual, predicted)
            total_length += len(actual.split())
            if idx % 100 == 0:
                logger.info(f"Processed elem {idx}; WER: {total_edit_distance / total_length}")
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    logger.info(f"Final WER for {subset} set: {total_edit_distance / total_length}")


def run_eval(model, model_type):
    if model_type == MODEL_TYPE_LIBRISPEECH:
        dataloader = model.test_dataloader()
        run_eval_subset(model, dataloader, "test")
    elif model_type == MODEL_TYPE_TEDLIUM3:
        dev_loader = model.dev_dataloader()
        test_loader = model.test_dataloader()
        run_eval_subset(model, dev_loader, "dev")
        run_eval_subset(model, test_loader, "test")
    elif model_type == MODEL_TYPE_MUSTC:
        dev_loader = model.dev_dataloader()
        test_common_loader = model.test_common_dataloader()
        test_he_loader = model.test_he_dataloader()
        run_eval_subset(model, dev_loader, "dev")
        run_eval_subset(model, test_common_loader, "tst-COMMON")
        run_eval_subset(model, test_he_loader, "tst-HE")
    else:
        raise ValueError(f"Encountered unsupported model type {model_type}.")
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75


def get_lightning_module(args):
    if args.model_type == MODEL_TYPE_LIBRISPEECH:
        return LibriSpeechRNNTModule.load_from_checkpoint(
            args.checkpoint_path,
            librispeech_path=str(args.dataset_path),
            sp_model_path=str(args.sp_model_path),
            global_stats_path=str(args.global_stats_path),
        )
    elif args.model_type == MODEL_TYPE_TEDLIUM3:
        return TEDLIUM3RNNTModule.load_from_checkpoint(
            args.checkpoint_path,
            tedlium_path=str(args.dataset_path),
            sp_model_path=str(args.sp_model_path),
            global_stats_path=str(args.global_stats_path),
        )
76
77
78
79
80
81
82
    elif args.model_type == MODEL_TYPE_MUSTC:
        return MuSTCRNNTModule.load_from_checkpoint(
            args.checkpoint_path,
            mustc_path=str(args.dataset_path),
            sp_model_path=str(args.sp_model_path),
            global_stats_path=str(args.global_stats_path),
        )
83
84
85
86
87
    else:
        raise ValueError(f"Encountered unsupported model type {args.model_type}.")


def parse_args():
88
    parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter)
89
    parser.add_argument(
90
91
92
93
        "--model-type", type=str, choices=[MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC], required=True
    )
    parser.add_argument(
        "--checkpoint-path",
94
95
96
97
        type=pathlib.Path,
        help="Path to checkpoint to use for evaluation.",
    )
    parser.add_argument(
98
        "--global-stats-path",
99
100
101
102
103
        default=pathlib.Path("global_stats.json"),
        type=pathlib.Path,
        help="Path to JSON file containing feature means and stddevs.",
    )
    parser.add_argument(
104
        "--dataset-path",
105
106
107
108
        type=pathlib.Path,
        help="Path to dataset.",
    )
    parser.add_argument(
109
        "--sp-model-path",
110
111
112
113
        type=pathlib.Path,
        help="Path to SentencePiece model.",
    )
    parser.add_argument(
114
        "--use-cuda",
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        action="store_true",
        default=False,
        help="Run using CUDA.",
    )
    parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging")
    return parser.parse_args()


def init_logger(debug):
    fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
    level = logging.DEBUG if debug else logging.INFO
    logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")


def cli_main():
    args = parse_args()
    init_logger(args.debug)
    model = get_lightning_module(args)
    if args.use_cuda:
        model = model.to(device="cuda")
135
    run_eval(model, args.model_type)
136
137
138
139


if __name__ == "__main__":
    cli_main()