tacotron2.py 45.4 KB
Newer Older
yangarbiter's avatar
yangarbiter committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

28
import warnings
yangarbiter's avatar
yangarbiter committed
29
from math import sqrt
30
from typing import Tuple, List, Optional, Union
yangarbiter's avatar
yangarbiter committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

import torch
from torch import nn
from torch import Tensor
from torch.nn import functional as F


__all__ = [
    "Tacotron2",
]


def _get_linear_layer(
    in_dim: int, out_dim: int, bias: bool = True, w_init_gain: str = "linear"
) -> torch.nn.Linear:
    r"""Linear layer with xavier uniform initialization.

    Args:
        in_dim (int): Size of each input sample.
        out_dim (int): Size of each output sample.
        bias (bool, optional): If set to ``False``, the layer will not learn an additive bias. (Default: ``True``)
        w_init_gain (str, optional): Parameter passed to ``torch.nn.init.calculate_gain``
            for setting the gain parameter of ``xavier_uniform_``. (Default: ``linear``)

    Returns:
        (torch.nn.Linear): The corresponding linear layer.
    """
    linear = torch.nn.Linear(in_dim, out_dim, bias=bias)
    torch.nn.init.xavier_uniform_(
        linear.weight, gain=torch.nn.init.calculate_gain(w_init_gain)
    )
    return linear


def _get_conv1d_layer(
    in_channels: int,
    out_channels: int,
    kernel_size: int = 1,
    stride: int = 1,
    padding: Optional[Union[str, int, Tuple[int]]] = None,
    dilation: int = 1,
    bias: bool = True,
    w_init_gain: str = "linear",
) -> torch.nn.Conv1d:
    r"""1D convolution with xavier uniform initialization.

    Args:
        in_channels (int): Number of channels in the input image.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int, optional): Number of channels in the input image. (Default: ``1``)
        stride (int, optional): Number of channels in the input image. (Default: ``1``)
        padding (str, int or tuple, optional): Padding added to both sides of the input.
            (Default: dilation * (kernel_size - 1) / 2)
        dilation (int, optional): Number of channels in the input image. (Default: ``1``)
        w_init_gain (str, optional): Parameter passed to ``torch.nn.init.calculate_gain``
            for setting the gain parameter of ``xavier_uniform_``. (Default: ``linear``)

    Returns:
        (torch.nn.Conv1d): The corresponding Conv1D layer.
    """
    if padding is None:
        assert kernel_size % 2 == 1
        padding = int(dilation * (kernel_size - 1) / 2)

    conv1d = torch.nn.Conv1d(
        in_channels,
        out_channels,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=bias,
    )

    torch.nn.init.xavier_uniform_(
        conv1d.weight, gain=torch.nn.init.calculate_gain(w_init_gain)
    )

    return conv1d


def _get_mask_from_lengths(lengths: Tensor) -> Tensor:
    r"""Returns a binary mask based on ``lengths``. The ``i``-th row and ``j``-th column of the mask
    is ``1`` if ``j`` is smaller than ``i``-th element of ``lengths.

    Args:
        lengths (Tensor): The length of each element in the batch, with shape (n_batch, ).

    Returns:
        mask (Tensor): The binary mask, with shape (n_batch, max of ``lengths``).
    """
    max_len = torch.max(lengths).item()
    ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype)
    mask = (ids < lengths.unsqueeze(1)).byte()
    mask = torch.le(mask, 0)
    return mask


class _LocationLayer(nn.Module):
    r"""Location layer used in the Attention model.

    Args:
        attention_n_filter (int): Number of filters for attention model.
        attention_kernel_size (int): Kernel size for attention model.
        attention_hidden_dim (int): Dimension of attention hidden representation.
    """

    def __init__(
        self,
        attention_n_filter: int,
        attention_kernel_size: int,
        attention_hidden_dim: int,
    ):
        super().__init__()
        padding = int((attention_kernel_size - 1) / 2)
        self.location_conv = _get_conv1d_layer(
            2,
            attention_n_filter,
            kernel_size=attention_kernel_size,
            padding=padding,
            bias=False,
            stride=1,
            dilation=1,
        )
        self.location_dense = _get_linear_layer(
            attention_n_filter, attention_hidden_dim, bias=False, w_init_gain="tanh"
        )

    def forward(self, attention_weights_cat: Tensor) -> Tensor:
        r"""Location layer used in the Attention model.

        Args:
            attention_weights_cat (Tensor): Cumulative and previous attention weights
                with shape (n_batch, 2, max of ``text_lengths``).

        Returns:
            processed_attention (Tensor): Cumulative and previous attention weights
                with shape (n_batch, ``attention_hidden_dim``).
        """
        # (n_batch, attention_n_filter, text_lengths.max())
        processed_attention = self.location_conv(attention_weights_cat)
        processed_attention = processed_attention.transpose(1, 2)
        # (n_batch, text_lengths.max(), attention_hidden_dim)
        processed_attention = self.location_dense(processed_attention)
        return processed_attention


class _Attention(nn.Module):
    r"""Locally sensitive attention model.

    Args:
        attention_rnn_dim (int): Number of hidden units for RNN.
        encoder_embedding_dim (int): Number of embedding dimensions in the Encoder.
        attention_hidden_dim (int): Dimension of attention hidden representation.
        attention_location_n_filter (int): Number of filters for Attention model.
        attention_location_kernel_size (int): Kernel size for Attention model.
    """

    def __init__(
        self,
        attention_rnn_dim: int,
        encoder_embedding_dim: int,
        attention_hidden_dim: int,
        attention_location_n_filter: int,
        attention_location_kernel_size: int,
    ) -> None:
        super().__init__()
        self.query_layer = _get_linear_layer(
            attention_rnn_dim, attention_hidden_dim, bias=False, w_init_gain="tanh"
        )
        self.memory_layer = _get_linear_layer(
            encoder_embedding_dim, attention_hidden_dim, bias=False, w_init_gain="tanh"
        )
        self.v = _get_linear_layer(attention_hidden_dim, 1, bias=False)
        self.location_layer = _LocationLayer(
            attention_location_n_filter,
            attention_location_kernel_size,
            attention_hidden_dim,
        )
        self.score_mask_value = -float("inf")

    def _get_alignment_energies(
        self, query: Tensor, processed_memory: Tensor, attention_weights_cat: Tensor
    ) -> Tensor:
        r"""Get the alignment vector.

        Args:
            query (Tensor): Decoder output with shape (n_batch, n_mels * n_frames_per_step).
            processed_memory (Tensor): Processed Encoder outputs
                with shape (n_batch, max of ``text_lengths``, attention_hidden_dim).
            attention_weights_cat (Tensor): Cumulative and previous attention weights
                with shape (n_batch, 2, max of ``text_lengths``).

        Returns:
            alignment (Tensor): attention weights, it is a tensor with shape (batch, max of ``text_lengths``).
        """

        processed_query = self.query_layer(query.unsqueeze(1))
        processed_attention_weights = self.location_layer(attention_weights_cat)
        energies = self.v(
            torch.tanh(processed_query + processed_attention_weights + processed_memory)
        )

        alignment = energies.squeeze(2)
        return alignment

    def forward(
        self,
        attention_hidden_state: Tensor,
        memory: Tensor,
        processed_memory: Tensor,
        attention_weights_cat: Tensor,
        mask: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        r"""Pass the input through the Attention model.

        Args:
            attention_hidden_state (Tensor): Attention rnn last output with shape (n_batch, ``attention_rnn_dim``).
            memory (Tensor): Encoder outputs with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
            processed_memory (Tensor): Processed Encoder outputs
                with shape (n_batch, max of ``text_lengths``, ``attention_hidden_dim``).
            attention_weights_cat (Tensor): Previous and cumulative attention weights
                with shape (n_batch, current_num_frames * 2, max of ``text_lengths``).
            mask (Tensor): Binary mask for padded data with shape (n_batch, current_num_frames).

        Returns:
            attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
            attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
        """
        alignment = self._get_alignment_energies(
            attention_hidden_state, processed_memory, attention_weights_cat
        )

        alignment = alignment.masked_fill(mask, self.score_mask_value)

        attention_weights = F.softmax(alignment, dim=1)
        attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
        attention_context = attention_context.squeeze(1)

        return attention_context, attention_weights


class _Prenet(nn.Module):
    r"""Prenet Module. It is consists of ``len(output_size)`` linear layers.

    Args:
        in_dim (int): The size of each input sample.
        output_sizes (list): The output dimension of each linear layers.
    """

    def __init__(self, in_dim: int, out_sizes: List[int]) -> None:
        super().__init__()
        in_sizes = [in_dim] + out_sizes[:-1]
        self.layers = nn.ModuleList(
            [
                _get_linear_layer(in_size, out_size, bias=False)
                for (in_size, out_size) in zip(in_sizes, out_sizes)
            ]
        )

    def forward(self, x: Tensor) -> Tensor:
        r"""Pass the input through Prenet.

        Args:
            x (Tensor): The input sequence to Prenet with shape (n_batch, in_dim).

        Return:
            x (Tensor): Tensor with shape (n_batch, sizes[-1])
        """

        for linear in self.layers:
            x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
        return x


class _Postnet(nn.Module):
    r"""Postnet Module.

    Args:
        n_mels (int): Number of mel bins.
        postnet_embedding_dim (int): Postnet embedding dimension.
        postnet_kernel_size (int): Postnet kernel size.
        postnet_n_convolution (int): Number of postnet convolutions.
    """

    def __init__(
        self,
        n_mels: int,
        postnet_embedding_dim: int,
        postnet_kernel_size: int,
        postnet_n_convolution: int,
    ):
        super().__init__()
        self.convolutions = nn.ModuleList()

        for i in range(postnet_n_convolution):
            in_channels = n_mels if i == 0 else postnet_embedding_dim
            out_channels = n_mels if i == (postnet_n_convolution - 1) else postnet_embedding_dim
            init_gain = "linear" if i == (postnet_n_convolution - 1) else "tanh"
            num_features = n_mels if i == (postnet_n_convolution - 1) else postnet_embedding_dim
            self.convolutions.append(
                nn.Sequential(
                    _get_conv1d_layer(
                        in_channels,
                        out_channels,
                        kernel_size=postnet_kernel_size,
                        stride=1,
                        padding=int((postnet_kernel_size - 1) / 2),
                        dilation=1,
                        w_init_gain=init_gain,
                    ),
                    nn.BatchNorm1d(num_features),
                )
            )

        self.n_convs = len(self.convolutions)

    def forward(self, x: Tensor) -> Tensor:
        r"""Pass the input through Postnet.

        Args:
            x (Tensor): The input sequence with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).

        Return:
            x (Tensor): Tensor with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
        """

358
        for i, conv in enumerate(self.convolutions):
yangarbiter's avatar
yangarbiter committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
            if i < self.n_convs - 1:
                x = F.dropout(torch.tanh(conv(x)), 0.5, training=self.training)
            else:
                x = F.dropout(conv(x), 0.5, training=self.training)

        return x


class _Encoder(nn.Module):
    r"""Encoder Module.

    Args:
        encoder_embedding_dim (int): Number of embedding dimensions in the encoder.
        encoder_n_convolution (int): Number of convolution layers in the encoder.
        encoder_kernel_size (int): The kernel size in the encoder.

    Examples
        >>> encoder = _Encoder(3, 512, 5)
        >>> input = torch.rand(10, 20, 30)
        >>> output = encoder(input)  # shape: (10, 30, 512)
    """

    def __init__(
        self,
        encoder_embedding_dim: int,
        encoder_n_convolution: int,
        encoder_kernel_size: int,
    ) -> None:
        super().__init__()

        self.convolutions = nn.ModuleList()
        for _ in range(encoder_n_convolution):
            conv_layer = nn.Sequential(
                _get_conv1d_layer(
                    encoder_embedding_dim,
                    encoder_embedding_dim,
                    kernel_size=encoder_kernel_size,
                    stride=1,
                    padding=int((encoder_kernel_size - 1) / 2),
                    dilation=1,
                    w_init_gain="relu",
                ),
                nn.BatchNorm1d(encoder_embedding_dim),
            )
            self.convolutions.append(conv_layer)

        self.lstm = nn.LSTM(
            encoder_embedding_dim,
            int(encoder_embedding_dim / 2),
            1,
            batch_first=True,
            bidirectional=True,
        )
        self.lstm.flatten_parameters()

    def forward(self, x: Tensor, input_lengths: Tensor) -> Tensor:
        r"""Pass the input through the Encoder.

        Args:
            x (Tensor): The input sequences with shape (n_batch, encoder_embedding_dim, n_seq).
            input_lengths (Tensor): The length of each input sequence with shape (n_batch, ).

        Return:
            x (Tensor): A tensor with shape (n_batch, n_seq, encoder_embedding_dim).
        """

        for conv in self.convolutions:
            x = F.dropout(F.relu(conv(x)), 0.5, self.training)

        x = x.transpose(1, 2)

        input_lengths = input_lengths.cpu()
        x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True)

        outputs, _ = self.lstm(x)
        outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)

        return outputs


class _Decoder(nn.Module):
    r"""Decoder with Attention model.

    Args:
        n_mels (int): number of mel bins
        n_frames_per_step (int): number of frames processed per step, only 1 is supported
        encoder_embedding_dim (int): the number of embedding dimensions in the encoder.
        decoder_rnn_dim (int): number of units in decoder LSTM
        decoder_max_step (int): maximum number of output mel spectrograms
        decoder_dropout (float): dropout probability for decoder LSTM
        decoder_early_stopping (bool): stop decoding when all samples are finished
        attention_rnn_dim (int): number of units in attention LSTM
        attention_hidden_dim (int): dimension of attention hidden representation
        attention_location_n_filter (int): number of filters for attention model
        attention_location_kernel_size (int): kernel size for attention model
        attention_dropout (float): dropout probability for attention LSTM
        prenet_dim (int): number of ReLU units in prenet layers
        gate_threshold (float): probability threshold for stop token
    """

    def __init__(
        self,
        n_mels: int,
        n_frames_per_step: int,
        encoder_embedding_dim: int,
        decoder_rnn_dim: int,
        decoder_max_step: int,
        decoder_dropout: float,
        decoder_early_stopping: bool,
        attention_rnn_dim: int,
        attention_hidden_dim: int,
        attention_location_n_filter: int,
        attention_location_kernel_size: int,
        attention_dropout: float,
        prenet_dim: int,
        gate_threshold: float,
    ) -> None:

        super().__init__()
        self.n_mels = n_mels
        self.n_frames_per_step = n_frames_per_step
        self.encoder_embedding_dim = encoder_embedding_dim
        self.attention_rnn_dim = attention_rnn_dim
        self.decoder_rnn_dim = decoder_rnn_dim
        self.prenet_dim = prenet_dim
        self.decoder_max_step = decoder_max_step
        self.gate_threshold = gate_threshold
        self.attention_dropout = attention_dropout
        self.decoder_dropout = decoder_dropout
        self.decoder_early_stopping = decoder_early_stopping

        self.prenet = _Prenet(n_mels * n_frames_per_step, [prenet_dim, prenet_dim])

        self.attention_rnn = nn.LSTMCell(
            prenet_dim + encoder_embedding_dim, attention_rnn_dim
        )

        self.attention_layer = _Attention(
            attention_rnn_dim,
            encoder_embedding_dim,
            attention_hidden_dim,
            attention_location_n_filter,
            attention_location_kernel_size,
        )

        self.decoder_rnn = nn.LSTMCell(
            attention_rnn_dim + encoder_embedding_dim, decoder_rnn_dim, True
        )

        self.linear_projection = _get_linear_layer(
            decoder_rnn_dim + encoder_embedding_dim, n_mels * n_frames_per_step
        )

        self.gate_layer = _get_linear_layer(
            decoder_rnn_dim + encoder_embedding_dim, 1, bias=True, w_init_gain="sigmoid"
        )

    def _get_initial_frame(self, memory: Tensor) -> Tensor:
        r"""Gets all zeros frames to use as the first decoder input.

        Args:
            memory (Tensor): Encoder outputs with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).

        Returns:
            decoder_input (Tensor): all zeros frames with shape
                (n_batch, max of ``text_lengths``, ``n_mels * n_frames_per_step``).
        """

        n_batch = memory.size(0)
        dtype = memory.dtype
        device = memory.device
        decoder_input = torch.zeros(
            n_batch, self.n_mels * self.n_frames_per_step, dtype=dtype, device=device
        )
        return decoder_input

    def _initialize_decoder_states(
        self, memory: Tensor
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
        r"""Initializes attention rnn states, decoder rnn states, attention
        weights, attention cumulative weights, attention context, stores memory
        and stores processed memory.

        Args:
            memory (Tensor): Encoder outputs with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).

        Returns:
            attention_hidden (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
            attention_cell (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
            decoder_hidden (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
            decoder_cell (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
            attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
            attention_weights_cum (Tensor): Cumulated attention weights with shape (n_batch, max of ``text_lengths``).
            attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
            processed_memory (Tensor): Processed encoder outputs
                with shape (n_batch, max of ``text_lengths``, ``attention_hidden_dim``).
        """
        n_batch = memory.size(0)
        max_time = memory.size(1)
        dtype = memory.dtype
        device = memory.device

        attention_hidden = torch.zeros(
            n_batch, self.attention_rnn_dim, dtype=dtype, device=device
        )
        attention_cell = torch.zeros(
            n_batch, self.attention_rnn_dim, dtype=dtype, device=device
        )

        decoder_hidden = torch.zeros(
            n_batch, self.decoder_rnn_dim, dtype=dtype, device=device
        )
        decoder_cell = torch.zeros(
            n_batch, self.decoder_rnn_dim, dtype=dtype, device=device
        )

        attention_weights = torch.zeros(n_batch, max_time, dtype=dtype, device=device)
        attention_weights_cum = torch.zeros(
            n_batch, max_time, dtype=dtype, device=device
        )
        attention_context = torch.zeros(
            n_batch, self.encoder_embedding_dim, dtype=dtype, device=device
        )

        processed_memory = self.attention_layer.memory_layer(memory)

        return (
            attention_hidden,
            attention_cell,
            decoder_hidden,
            decoder_cell,
            attention_weights,
            attention_weights_cum,
            attention_context,
            processed_memory,
        )

    def _parse_decoder_inputs(self, decoder_inputs: Tensor) -> Tensor:
        r"""Prepares decoder inputs.

        Args:
            decoder_inputs (Tensor): Inputs used for teacher-forced training, i.e. mel-specs,
                with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``)

        Returns:
            inputs (Tensor): Processed decoder inputs with shape (max of ``mel_specgram_lengths``, n_batch, ``n_mels``).
        """
        # (n_batch, n_mels, mel_specgram_lengths.max()) -> (n_batch, mel_specgram_lengths.max(), n_mels)
        decoder_inputs = decoder_inputs.transpose(1, 2)
        decoder_inputs = decoder_inputs.view(
            decoder_inputs.size(0),
            int(decoder_inputs.size(1) / self.n_frames_per_step),
            -1,
        )
        # (n_batch, mel_specgram_lengths.max(), n_mels) -> (mel_specgram_lengths.max(), n_batch, n_mels)
        decoder_inputs = decoder_inputs.transpose(0, 1)
        return decoder_inputs

    def _parse_decoder_outputs(
618
        self, mel_specgram: Tensor, gate_outputs: Tensor, alignments: Tensor
yangarbiter's avatar
yangarbiter committed
619
620
621
622
    ) -> Tuple[Tensor, Tensor, Tensor]:
        r"""Prepares decoder outputs for output

        Args:
623
            mel_specgram (Tensor): mel spectrogram with shape (max of ``mel_specgram_lengths``, n_batch, ``n_mels``)
yangarbiter's avatar
yangarbiter committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            gate_outputs (Tensor): predicted stop token with shape (max of ``mel_specgram_lengths``, n_batch)
            alignments (Tensor): sequence of attention weights from the decoder
                with shape (max of ``mel_specgram_lengths``, n_batch, max of ``text_lengths``)

        Returns:
            mel_specgram (Tensor): mel spectrogram with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``)
            gate_outputs (Tensor): predicted stop token with shape (n_batch, max of ``mel_specgram_lengths``)
            alignments (Tensor): sequence of attention weights from the decoder
                with shape (n_batch, max of ``mel_specgram_lengths``, max of ``text_lengths``)
        """
        # (mel_specgram_lengths.max(), n_batch, text_lengths.max())
        # -> (n_batch, mel_specgram_lengths.max(), text_lengths.max())
        alignments = alignments.transpose(0, 1).contiguous()
        # (mel_specgram_lengths.max(), n_batch) -> (n_batch, mel_specgram_lengths.max())
        gate_outputs = gate_outputs.transpose(0, 1).contiguous()
        # (mel_specgram_lengths.max(), n_batch, n_mels) -> (n_batch, mel_specgram_lengths.max(), n_mels)
640
        mel_specgram = mel_specgram.transpose(0, 1).contiguous()
yangarbiter's avatar
yangarbiter committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        # decouple frames per step
        shape = (mel_specgram.shape[0], -1, self.n_mels)
        mel_specgram = mel_specgram.view(*shape)
        # (n_batch, mel_specgram_lengths.max(), n_mels) -> (n_batch, n_mels, T_out)
        mel_specgram = mel_specgram.transpose(1, 2)

        return mel_specgram, gate_outputs, alignments

    def decode(
        self,
        decoder_input: Tensor,
        attention_hidden: Tensor,
        attention_cell: Tensor,
        decoder_hidden: Tensor,
        decoder_cell: Tensor,
        attention_weights: Tensor,
        attention_weights_cum: Tensor,
        attention_context: Tensor,
        memory: Tensor,
        processed_memory: Tensor,
        mask: Tensor,
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
        r"""Decoder step using stored states, attention and memory

        Args:
            decoder_input (Tensor): Output of the Prenet with shape (n_batch, ``prenet_dim``).
            attention_hidden (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
            attention_cell (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
            decoder_hidden (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
            decoder_cell (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
            attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
            attention_weights_cum (Tensor): Cumulated attention weights with shape (n_batch, max of ``text_lengths``).
            attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
            memory (Tensor): Encoder output with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
            processed_memory (Tensor): Processed Encoder outputs
                with shape (n_batch, max of ``text_lengths``, ``attention_hidden_dim``).
            mask (Tensor): Binary mask for padded data with shape (n_batch, current_num_frames).

        Returns:
            decoder_output: Predicted mel spectrogram for the current frame with shape (n_batch, ``n_mels``).
            gate_prediction (Tensor): Prediction of the stop token with shape (n_batch, ``1``).
            attention_hidden (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
            attention_cell (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
            decoder_hidden (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
            decoder_cell (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
            attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
            attention_weights_cum (Tensor): Cumulated attention weights with shape (n_batch, max of ``text_lengths``).
            attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
        """
        cell_input = torch.cat((decoder_input, attention_context), -1)

        attention_hidden, attention_cell = self.attention_rnn(
            cell_input, (attention_hidden, attention_cell)
        )
        attention_hidden = F.dropout(
            attention_hidden, self.attention_dropout, self.training
        )

        attention_weights_cat = torch.cat(
            (attention_weights.unsqueeze(1), attention_weights_cum.unsqueeze(1)), dim=1
        )
        attention_context, attention_weights = self.attention_layer(
            attention_hidden, memory, processed_memory, attention_weights_cat, mask
        )

        attention_weights_cum += attention_weights
        decoder_input = torch.cat((attention_hidden, attention_context), -1)

        decoder_hidden, decoder_cell = self.decoder_rnn(
            decoder_input, (decoder_hidden, decoder_cell)
        )
        decoder_hidden = F.dropout(decoder_hidden, self.decoder_dropout, self.training)

        decoder_hidden_attention_context = torch.cat(
            (decoder_hidden, attention_context), dim=1
        )
        decoder_output = self.linear_projection(decoder_hidden_attention_context)

        gate_prediction = self.gate_layer(decoder_hidden_attention_context)

        return (
            decoder_output,
            gate_prediction,
            attention_hidden,
            attention_cell,
            decoder_hidden,
            decoder_cell,
            attention_weights,
            attention_weights_cum,
            attention_context,
        )

    def forward(
        self, memory: Tensor, mel_specgram_truth: Tensor, memory_lengths: Tensor
    ) -> Tuple[Tensor, Tensor, Tensor]:
        r"""Decoder forward pass for training.

        Args:
            memory (Tensor): Encoder outputs
                with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
            mel_specgram_truth (Tensor): Decoder ground-truth mel-specs for teacher forcing
                with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
            memory_lengths (Tensor): Encoder output lengths for attention masking
                (the same as ``text_lengths``) with shape (n_batch, ).

        Returns:
            mel_specgram (Tensor): Predicted mel spectrogram
                with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
            gate_outputs (Tensor): Predicted stop token for each timestep
                with shape (n_batch,  max of ``mel_specgram_lengths``).
            alignments (Tensor): Sequence of attention weights from the decoder
                with shape (n_batch,  max of ``mel_specgram_lengths``, max of ``text_lengths``).
        """

        decoder_input = self._get_initial_frame(memory).unsqueeze(0)
        decoder_inputs = self._parse_decoder_inputs(mel_specgram_truth)
        decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
        decoder_inputs = self.prenet(decoder_inputs)

        mask = _get_mask_from_lengths(memory_lengths)
        (
            attention_hidden,
            attention_cell,
            decoder_hidden,
            decoder_cell,
            attention_weights,
            attention_weights_cum,
            attention_context,
            processed_memory,
        ) = self._initialize_decoder_states(memory)

        mel_outputs, gate_outputs, alignments = [], [], []
        while len(mel_outputs) < decoder_inputs.size(0) - 1:
            decoder_input = decoder_inputs[len(mel_outputs)]
            (
                mel_output,
                gate_output,
                attention_hidden,
                attention_cell,
                decoder_hidden,
                decoder_cell,
                attention_weights,
                attention_weights_cum,
                attention_context,
            ) = self.decode(
                decoder_input,
                attention_hidden,
                attention_cell,
                decoder_hidden,
                decoder_cell,
                attention_weights,
                attention_weights_cum,
                attention_context,
                memory,
                processed_memory,
                mask,
            )

            mel_outputs += [mel_output.squeeze(1)]
            gate_outputs += [gate_output.squeeze()]
            alignments += [attention_weights]

        mel_specgram, gate_outputs, alignments = self._parse_decoder_outputs(
            torch.stack(mel_outputs), torch.stack(gate_outputs), torch.stack(alignments)
        )

        return mel_specgram, gate_outputs, alignments

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
    def _get_go_frame(self, memory: Tensor) -> Tensor:
        """Gets all zeros frames to use as the first decoder input

        args:
            memory (Tensor): Encoder outputs
                with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).

        returns:
            decoder_input (Tensor): All zeros frames with shape(n_batch, ``n_mels`` * ``n_frame_per_step``).
        """

        n_batch = memory.size(0)
        dtype = memory.dtype
        device = memory.device
        decoder_input = torch.zeros(
            n_batch, self.n_mels * self.n_frames_per_step, dtype=dtype, device=device
        )
        return decoder_input

    @torch.jit.export
    def infer(self,
              memory: Tensor,
              memory_lengths: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """Decoder inference

        Args:
            memory (Tensor): Encoder outputs
                with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
            memory_lengths (Tensor): Encoder output lengths for attention masking
                (the same as ``text_lengths``) with shape (n_batch, ).

        Returns:
            mel_specgram (Tensor): Predicted mel spectrogram
                with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
            mel_specgram_lengths (Tensor): the length of the predicted mel spectrogram (n_batch, ))
            gate_outputs (Tensor): Predicted stop token for each timestep
                with shape (n_batch,  max of ``mel_specgram_lengths``).
            alignments (Tensor): Sequence of attention weights from the decoder
                with shape (n_batch,  max of ``mel_specgram_lengths``, max of ``text_lengths``).
        """
849
850
        batch_size, device = memory.size(0), memory.device

851
852
853
854
855
856
857
858
859
860
861
862
863
864
        decoder_input = self._get_go_frame(memory)

        mask = _get_mask_from_lengths(memory_lengths)
        (
            attention_hidden,
            attention_cell,
            decoder_hidden,
            decoder_cell,
            attention_weights,
            attention_weights_cum,
            attention_context,
            processed_memory,
        ) = self._initialize_decoder_states(memory)

865
866
        mel_specgram_lengths = torch.zeros([batch_size], dtype=torch.int32, device=device)
        finished = torch.zeros([batch_size], dtype=torch.bool, device=device)
moto's avatar
moto committed
867
868
869
        mel_specgrams: List[Tensor] = []
        gate_outputs: List[Tensor] = []
        alignments: List[Tensor] = []
870
        for _ in range(self.decoder_max_step):
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
            decoder_input = self.prenet(decoder_input)
            (
                mel_specgram,
                gate_output,
                attention_hidden,
                attention_cell,
                decoder_hidden,
                decoder_cell,
                attention_weights,
                attention_weights_cum,
                attention_context,
            ) = self.decode(
                decoder_input,
                attention_hidden,
                attention_cell,
                decoder_hidden,
                decoder_cell,
                attention_weights,
                attention_weights_cum,
                attention_context,
                memory,
                processed_memory,
                mask,
            )

moto's avatar
moto committed
896
897
898
            mel_specgrams.append(mel_specgram.unsqueeze(0))
            gate_outputs.append(gate_output.transpose(0, 1))
            alignments.append(attention_weights)
899
            mel_specgram_lengths[~finished] += 1
900

901
902
            finished |= torch.sigmoid(gate_output.squeeze(1)) > self.gate_threshold
            if self.decoder_early_stopping and torch.all(finished):
903
904
905
906
                break

            decoder_input = mel_specgram

907
908
909
910
911
        if len(mel_specgrams) == self.decoder_max_step:
            warnings.warn(
                "Reached max decoder steps. The generated spectrogram might not cover "
                "the whole transcript.")

moto's avatar
moto committed
912
913
914
915
        mel_specgrams = torch.cat(mel_specgrams, dim=0)
        gate_outputs = torch.cat(gate_outputs, dim=0)
        alignments = torch.cat(alignments, dim=0)

916
917
918
919
920
921
        mel_specgrams, gate_outputs, alignments = self._parse_decoder_outputs(
            mel_specgrams, gate_outputs, alignments
        )

        return mel_specgrams, mel_specgram_lengths, gate_outputs, alignments

yangarbiter's avatar
yangarbiter committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

class Tacotron2(nn.Module):
    r"""Tacotron2 model based on the implementation from
    `Nvidia <https://github.com/NVIDIA/DeepLearningExamples/>`_.

    The original implementation was introduced in
    *Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions*
    [:footcite:`shen2018natural`].

    Args:
        mask_padding (bool, optional): Use mask padding (Default: ``False``).
        n_mels (int, optional): Number of mel bins (Default: ``80``).
        n_symbol (int, optional): Number of symbols for the input text (Default: ``148``).
        n_frames_per_step (int, optional): Number of frames processed per step, only 1 is supported (Default: ``1``).
        symbol_embedding_dim (int, optional): Input embedding dimension (Default: ``512``).
        encoder_n_convolution (int, optional): Number of encoder convolutions (Default: ``3``).
        encoder_kernel_size (int, optional): Encoder kernel size (Default: ``5``).
        encoder_embedding_dim (int, optional): Encoder embedding dimension (Default: ``512``).
        decoder_rnn_dim (int, optional): Number of units in decoder LSTM (Default: ``1024``).
        decoder_max_step (int, optional): Maximum number of output mel spectrograms (Default: ``2000``).
        decoder_dropout (float, optional): Dropout probability for decoder LSTM (Default: ``0.1``).
        decoder_early_stopping (bool, optional): Continue decoding after all samples are finished (Default: ``True``).
        attention_rnn_dim (int, optional): Number of units in attention LSTM (Default: ``1024``).
        attention_hidden_dim (int, optional): Dimension of attention hidden representation (Default: ``128``).
        attention_location_n_filter (int, optional): Number of filters for attention model (Default: ``32``).
        attention_location_kernel_size (int, optional): Kernel size for attention model (Default: ``31``).
        attention_dropout (float, optional): Dropout probability for attention LSTM (Default: ``0.1``).
        prenet_dim (int, optional): Number of ReLU units in prenet layers (Default: ``256``).
        postnet_n_convolution (int, optional): Number of postnet convolutions (Default: ``5``).
        postnet_kernel_size (int, optional): Postnet kernel size (Default: ``5``).
        postnet_embedding_dim (int, optional): Postnet embedding dimension (Default: ``512``).
        gate_threshold (float, optional): Probability threshold for stop token (Default: ``0.5``).
    """

    def __init__(
        self,
        mask_padding: bool = False,
        n_mels: int = 80,
        n_symbol: int = 148,
        n_frames_per_step: int = 1,
        symbol_embedding_dim: int = 512,
        encoder_embedding_dim: int = 512,
        encoder_n_convolution: int = 3,
        encoder_kernel_size: int = 5,
        decoder_rnn_dim: int = 1024,
        decoder_max_step: int = 2000,
        decoder_dropout: float = 0.1,
        decoder_early_stopping: bool = True,
        attention_rnn_dim: int = 1024,
        attention_hidden_dim: int = 128,
        attention_location_n_filter: int = 32,
        attention_location_kernel_size: int = 31,
        attention_dropout: float = 0.1,
        prenet_dim: int = 256,
        postnet_n_convolution: int = 5,
        postnet_kernel_size: int = 5,
        postnet_embedding_dim: int = 512,
        gate_threshold: float = 0.5,
    ) -> None:
        super().__init__()

        self.mask_padding = mask_padding
        self.n_mels = n_mels
        self.n_frames_per_step = n_frames_per_step
        self.embedding = nn.Embedding(n_symbol, symbol_embedding_dim)
        std = sqrt(2.0 / (n_symbol + symbol_embedding_dim))
        val = sqrt(3.0) * std
        self.embedding.weight.data.uniform_(-val, val)
        self.encoder = _Encoder(
            encoder_embedding_dim, encoder_n_convolution, encoder_kernel_size
        )
        self.decoder = _Decoder(
            n_mels,
            n_frames_per_step,
            encoder_embedding_dim,
            decoder_rnn_dim,
            decoder_max_step,
            decoder_dropout,
            decoder_early_stopping,
            attention_rnn_dim,
            attention_hidden_dim,
            attention_location_n_filter,
            attention_location_kernel_size,
            attention_dropout,
            prenet_dim,
            gate_threshold,
        )
        self.postnet = _Postnet(
            n_mels, postnet_embedding_dim, postnet_kernel_size, postnet_n_convolution
        )

    def forward(
        self,
1015
1016
        tokens: Tensor,
        token_lengths: Tensor,
yangarbiter's avatar
yangarbiter committed
1017
1018
1019
1020
1021
1022
        mel_specgram: Tensor,
        mel_specgram_lengths: Tensor,
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        r"""Pass the input through the Tacotron2 model. This is in teacher
        forcing mode, which is generally used for training.

1023
        The input ``tokens`` should be padded with zeros to length max of ``token_lengths``.
yangarbiter's avatar
yangarbiter committed
1024
1025
1026
        The input ``mel_specgram`` should be padded with zeros to length max of ``mel_specgram_lengths``.

        Args:
1027
1028
            tokens (Tensor): The input tokens to Tacotron2 with shape `(n_batch, max of token_lengths)`.
            token_lengths (Tensor): The valid length of each sample in ``tokens`` with shape `(n_batch, )`.
yangarbiter's avatar
yangarbiter committed
1029
            mel_specgram (Tensor): The target mel spectrogram
hwangjeff's avatar
hwangjeff committed
1030
1031
                with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
            mel_specgram_lengths (Tensor): The length of each mel spectrogram with shape `(n_batch, )`.
yangarbiter's avatar
yangarbiter committed
1032
1033

        Returns:
1034
            [Tensor, Tensor, Tensor, Tensor]:
hwangjeff's avatar
hwangjeff committed
1035
1036
1037
1038
1039
1040
1041
1042
                Tensor
                    Mel spectrogram before Postnet with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
                Tensor
                    Mel spectrogram after Postnet with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
                Tensor
                    The output for stop token at each time step with shape `(n_batch, max of mel_specgram_lengths)`.
                Tensor
                    Sequence of attention weights from the decoder with
1043
                    shape `(n_batch, max of mel_specgram_lengths, max of token_lengths)`.
yangarbiter's avatar
yangarbiter committed
1044
1045
        """

1046
        embedded_inputs = self.embedding(tokens).transpose(1, 2)
yangarbiter's avatar
yangarbiter committed
1047

1048
        encoder_outputs = self.encoder(embedded_inputs, token_lengths)
yangarbiter's avatar
yangarbiter committed
1049
        mel_specgram, gate_outputs, alignments = self.decoder(
1050
            encoder_outputs, mel_specgram, memory_lengths=token_lengths
yangarbiter's avatar
yangarbiter committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        )

        mel_specgram_postnet = self.postnet(mel_specgram)
        mel_specgram_postnet = mel_specgram + mel_specgram_postnet

        if self.mask_padding:
            mask = _get_mask_from_lengths(mel_specgram_lengths)
            mask = mask.expand(self.n_mels, mask.size(0), mask.size(1))
            mask = mask.permute(1, 0, 2)

            mel_specgram.masked_fill_(mask, 0.0)
            mel_specgram_postnet.masked_fill_(mask, 0.0)
            gate_outputs.masked_fill_(mask[:, 0, :], 1e3)

        return mel_specgram, mel_specgram_postnet, gate_outputs, alignments
1066
1067

    @torch.jit.export
1068
    def infer(self, tokens: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Tensor, Tensor]:
1069
        r"""Using Tacotron2 for inference. The input is a batch of encoded
1070
        sentences (``tokens``) and its corresponding lengths (``lengths``). The
1071
1072
1073
        output is the generated mel spectrograms, its corresponding lengths, and
        the attention weights from the decoder.

1074
        The input `tokens` should be padded with zeros to length max of ``lengths``.
1075
1076

        Args:
1077
1078
1079
1080
            tokens (Tensor): The input tokens to Tacotron2 with shape `(n_batch, max of lengths)`.
            lengths (Tensor or None, optional):
                The valid length of each sample in ``tokens`` with shape `(n_batch, )`.
                If ``None``, it is assumed that the all the tokens are valid. Default: ``None``
1081

hwangjeff's avatar
hwangjeff committed
1082
        Returns:
1083
            (Tensor, Tensor, Tensor):
hwangjeff's avatar
hwangjeff committed
1084
1085
1086
1087
1088
1089
                Tensor
                    The predicted mel spectrogram with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
                Tensor
                    The length of the predicted mel spectrogram with shape `(n_batch, )`.
                Tensor
                    Sequence of attention weights from the decoder with shape
1090
                    `(n_batch, max of mel_specgram_lengths, max of lengths)`.
1091
        """
1092
1093
1094
        n_batch, max_length = tokens.shape
        if lengths is None:
            lengths = torch.tensor([max_length]).expand(n_batch).to(tokens.device, tokens.dtype)
1095

1096
        assert lengths is not None  # For TorchScript compiler
1097

1098
1099
        embedded_inputs = self.embedding(tokens).transpose(1, 2)
        encoder_outputs = self.encoder(embedded_inputs, lengths)
1100
        mel_specgram, mel_specgram_lengths, _, alignments = self.decoder.infer(
1101
            encoder_outputs, lengths
1102
1103
1104
1105
1106
1107
1108
1109
        )

        mel_outputs_postnet = self.postnet(mel_specgram)
        mel_outputs_postnet = mel_specgram + mel_outputs_postnet

        alignments = alignments.unfold(1, n_batch, n_batch).transpose(0, 2)

        return mel_outputs_postnet, mel_specgram_lengths, alignments