configuration_graphdoc.py 5.32 KB
Newer Older
HHL's avatar
v  
HHL committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# coding=utf-8
from transformers.utils import logging
from ..layoutlmv2 import LayoutLMv2Config


logger = logging.get_logger(__name__)


class GraphDocConfig(LayoutLMv2Config):
    model_type = "graphdoc"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=12,
        num_glu_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        vision_hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        gradient_checkpointing=False,
        max_2d_position_embeddings=1024,
        max_rel_pos=128,
        rel_pos_bins=32,
        fast_qkv=True,
        max_rel_2d_pos=256,
        rel_2d_pos_bins=64,
        rel_topk=56,
        convert_sync_batchnorm=True,
        image_feature_pool_shape=[7, 7, 256],
        coordinate_size=128,
        shape_size=128,
        has_relative_attention_bias=True,
        has_spatial_attention_bias=True,
        has_visual_segment_embedding=False,
        use_dtc=False,
        dtc_alpha=1,
        dtc_num=16,
        use_mlm=True,
        mlm_alpha=1,
        mlm_prob=0.15,
        is_cover=False,
        use_mvm=False,
        mvm_alpha=1,
        mvm_prob=0.075,
        use_lcl=False,
        lcl_alpha=1,
        use_bdp=False,
        bdp_alpha=1,
        bdp_blocks=4,
        pos_embed_size=24,
        expand_wh_scale=5.0,
        use_visual_input=True,
        use_abs_emb=True,
        use_rel_2d=False,
        use_rel_emb=True,
        local_atten=False,
        abs_emb_type='Liner',
        datasets=['docbank', 'rvlcdip'],
        sentence_model='/yrfs2/cv1/jszhang6/zrzhang6/PretrainModel/Transformer/sup-simcse-bert-base-uncased/',
        mask_embed='/yrfs2/cv1/jszhang6/zrzhang6/DocumentPretrain/model/PretrainLM/libs/configs/layoutclmV28/mask_embedding.npy',
        vision_freeze=False,
        backbone_cfg={'attn_drop_rate': 0.0, 'depths': [2, 2, 6, 2], 'drop_path_rate': 0.2, 
                    'drop_rate': 0.0, 'embed_dims': 96, 'mlp_ratio': 4, 'num_heads': [3, 6, 12, 24], 
                    'out_indices': (0, 1, 2, 3), 'patch_norm': True, 'qk_scale': None, 'qkv_bias': True, 
                    'type': 'SwinTransformer', 'window_size': 7, 'with_cp': False},
        neck_cfg={'in_channels': [96, 192, 384, 768], 'num_outs': 5, 'out_channels': 256, 'type': 'FPN'},
        vision_pretrain='/work1/cv1/jszhang6/TSR/code/mmdetection/experiments/publaynet/centernet_swin_t/epoch_12.pth',
        vision_size=256,
        **kwargs
    ):
        super().__init__(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            intermediate_size=intermediate_size,
            hidden_act=hidden_act,
            hidden_dropout_prob=hidden_dropout_prob,
            attention_probs_dropout_prob=attention_probs_dropout_prob,
            max_position_embeddings=max_position_embeddings,
            type_vocab_size=type_vocab_size,
            initializer_range=initializer_range,
            layer_norm_eps=layer_norm_eps,
            pad_token_id=pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
            **kwargs,
        )
        self.max_2d_position_embeddings = max_2d_position_embeddings
        self.max_rel_pos = max_rel_pos
        self.rel_pos_bins = rel_pos_bins
        self.fast_qkv = fast_qkv
        self.max_rel_2d_pos = max_rel_2d_pos
        self.rel_2d_pos_bins = rel_2d_pos_bins
        self.convert_sync_batchnorm = convert_sync_batchnorm
        self.image_feature_pool_shape = image_feature_pool_shape
        self.coordinate_size = coordinate_size
        self.shape_size = shape_size
        self.has_relative_attention_bias = has_relative_attention_bias
        self.has_spatial_attention_bias = has_spatial_attention_bias
        self.has_visual_segment_embedding = has_visual_segment_embedding

        self.datasets = datasets
        self.vision_hidden_dropout_prob = vision_hidden_dropout_prob
        self.num_glu_layers = num_glu_layers
        self.pos_embed_size = pos_embed_size
        self.expand_wh_scale = expand_wh_scale
        self.use_rel_2d = use_rel_2d
        self.use_rel_emb = use_rel_emb
        self.local_atten = local_atten
        self.abs_emb_type = abs_emb_type
        self.rel_topk = rel_topk
        self.mlm_prob = mlm_prob
        self.mlm_alpha = mlm_alpha
        self.sentence_model = sentence_model
        self.mask_embed = mask_embed
        self.vision_freeze = vision_freeze
        self.backbone_cfg = backbone_cfg
        self.neck_cfg = neck_cfg
        self.vision_pretrain = vision_pretrain
        self.vision_size = vision_size
        self.use_mlm = use_mlm
        self.use_lcl = use_lcl
        self.lcl_alpha = lcl_alpha
        self.use_dtc = use_dtc
        self.dtc_alpha = dtc_alpha
        self.dtc_num = dtc_num
        self.use_bdp = use_bdp
        self.bdp_alpha = bdp_alpha
        self.bdp_blocks = bdp_blocks
        self.use_abs_emb = use_abs_emb
        self.use_mvm = use_mvm
        self.is_cover = is_cover
        self.mvm_alpha = mvm_alpha
        self.mvm_prob = mvm_prob
        self.use_visual_input = use_visual_input