README.md 5.26 KB
Newer Older
xiabo's avatar
xiabo committed
1
# Qwen
xiabo's avatar
xiabo committed
2
## 论文
lvhan028's avatar
lvhan028 committed
3

xiabo's avatar
xiabo committed
4
`Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities`
RunningLeon's avatar
RunningLeon committed
5

xiabo's avatar
xiabo committed
6
https://arxiv.org/pdf/2308.12966.pdf
lvhan028's avatar
lvhan028 committed
7

xiabo's avatar
xiabo committed
8
## 模型结构
lvhan028's avatar
lvhan028 committed
9

xiabo's avatar
xiabo committed
10
通义千问(Qwen) 是阿里云研发的通义千问大模型系列的70/140亿参数规模的模型。Qwen是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。
lvhan028's avatar
lvhan028 committed
11

xiabo's avatar
xiabo committed
12
本项目主要针对Qwen-Chat在DCU平台的推理性能优化,达到DCU平台较快的对话效果。
13

xiabo's avatar
xiabo committed
14
![qwen](docs/transformer.jpg)
15
16


xiabo's avatar
xiabo committed
17
## 算法原理
18

xiabo's avatar
xiabo committed
19
Qwen的构建采用了类似LLaMA的架构。与标准transformer的主要差异有:1)使用非连接嵌入、2)使用旋转位置嵌入、3)在注意力中除了QKV外不使用偏置、4)使用RMSNorm代替LayerNorm、5)使用SwiGLU代替ReLU、以及6)采用快速注意力来加速训练。该模型共有32层,嵌入维度为4096,注意力头数为32。
20

xiabo's avatar
xiabo committed
21
![qwen](docs/qwen.png)
lvhan028's avatar
lvhan028 committed
22

xiabo's avatar
xiabo committed
23
## 环境配置
xiabo's avatar
xiabo committed
24
提供[光源](https://www.sourcefind.cn/#/service-details)拉取推理的docker镜像:
xuxz's avatar
xuxz committed
25
26
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
xiabo's avatar
xiabo committed
27
28
29
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
xuxz's avatar
xuxz committed
30
docker run -it --network=host --name=qwen_lmdeploy --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=1024G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 -v <Host Path>:<Container Path> <Image ID> /bin/bash
31
```
xiabo's avatar
xiabo committed
32
镜像版本依赖:
xuxz's avatar
xuxz committed
33
34
35
* DTK驱动:24.04.1
* Pytorch: 2.1.0
* python: python3.10
xiabo's avatar
xiabo committed
36
37
38
39
40

## 数据集


## 推理
xiabo's avatar
xiabo committed
41
### 源码编译安装
xuxz's avatar
xuxz committed
42
```bash
xiabo's avatar
xiabo committed
43
# 若使用光源的镜像,可以不用源码编译,镜像里面安装好了lmdeploy,可跳过源码编译安装
zhouxiang's avatar
zhouxiang committed
44
# 获取源码,编译并安装
xuxz's avatar
xuxz committed
45
git clone -b v1.4 http://developer.hpccube.com/codes/modelzoo/Qwen_lmdeploy.git
zhouxiang's avatar
zhouxiang committed
46
cd qwen_lmdeploy
zhouxiang's avatar
zhouxiang committed
47
48
git submodule init && git submodule update
cd lmdeploy
xiabo's avatar
xiabo committed
49
50
51
52
53
54
55
mkdir build && cd build
sh ../generate.sh
make -j 32
make install
cd .. && python3 setup.py install
```

xiabo's avatar
xiabo committed
56
### 模型下载
xuxz's avatar
xuxz committed
57

dongchy920's avatar
dongchy920 committed
58
SCNet模型下载
xiabo's avatar
xiabo committed
59

dongchy920's avatar
dongchy920 committed
60
[Qwen-7B-chat](http://113.200.138.88:18080/aimodels/Qwen-7B-Chat)
xiabo's avatar
xiabo committed
61

dongchy920's avatar
dongchy920 committed
62
63
64
[Qwen-14B-chat](http://113.200.138.88:18080/aimodels/Qwen-14B-Chat)

[Qwen-72B-Chat](http://113.200.138.88:18080/aimodels/Qwen-72B-Chat)
xiabo's avatar
xiabo committed
65

xuxz's avatar
xuxz committed
66
### 运行前
zhouxiang's avatar
zhouxiang committed
67

xuxz's avatar
xuxz committed
68
69
```bash
source /opt/dtk/cuda/env.sh
xiabo's avatar
xiabo committed
70
```
xiabo's avatar
xiabo committed
71
72


xuxz's avatar
xuxz committed
73
74
### 运行 Qwen-7B-chat
```bash
xiabo's avatar
xiabo committed
75
# bash界面运行
xuxz's avatar
xuxz committed
76
lmdeploy chat turbomind path_to_Qwen-7B-chat    # 输入问题后执行2次回车进行推理
xiabo's avatar
xiabo committed
77
78

# 服务器网页端运行
xuxz's avatar
xuxz committed
79
80
# <server-name> gradio服务器的ip地址
# <server-port> gradio服务器的ip的端口
xiabo's avatar
xiabo committed
81
# <tp> 用于张量并行的GPU数量应该是2^n (和模型转换的时候保持一致)
xuxz's avatar
xuxz committed
82
83
84
# <backend> 后端支持turbomind/pytorch
lmdeploy serve gradio path_to_Qwen-7B-chat --server-name {ip} --server-port {port} --backend turbomind --tp 1
在网页上输入{ip}:{port}即可进行对话
xiabo's avatar
xiabo committed
85
```
xiabo's avatar
xiabo committed
86
### 运行 Qwen-14B-chat
xuxz's avatar
xuxz committed
87
```bash
xiabo's avatar
xiabo committed
88
# bash界面运行
xuxz's avatar
xuxz committed
89
lmdeploy chat turbomind path_to_Qwen-14B-chat --tp 2
xiabo's avatar
xiabo committed
90
91

# 服务器网页端运行
xuxz's avatar
xuxz committed
92
93
94
# 在bash端运行:
lmdeploy serve gradio path_to_Qwen-14B-chat --server-name {ip} --server-port {port} --backend turbomind --tp 2
在网页上输入{ip}:{port}即可进行对话
zhouxiang's avatar
zhouxiang committed
95
96
97
```
### 运行 Qwen-72B-chat

xuxz's avatar
xuxz committed
98
```bash
zhouxiang's avatar
zhouxiang committed
99
# bash界面运行
xuxz's avatar
xuxz committed
100
lmdeploy chat turbomind path_to_Qwen-72B-chat --tp 8
zhouxiang's avatar
zhouxiang committed
101
102

# 服务器网页端运行
xuxz's avatar
xuxz committed
103
104
105
#在bash端运行:
lmdeploy serve gradio path_to_Qwen-72B-chat --server-name {ip} --server-port {port} --backend turbomind --tp 8
在网页上输入{ip}:{port}即可进行对话
xiabo's avatar
xiabo committed
106
```
zhouxiang's avatar
zhouxiang committed
107

zhouxiang's avatar
zhouxiang committed
108
109
110
111
### api-server方式运行实例

启动server:

xuxz's avatar
xuxz committed
112
```bash
zhouxiang's avatar
zhouxiang committed
113
# --tp: 在 tensor parallel时,使用的GPU数量
xuxz's avatar
xuxz committed
114
lmdeploy serve api_server path_to_Qwen-72B-chat --server-name {ip} --server-port {port} --tp 8
zhouxiang's avatar
zhouxiang committed
115
116
```

xuxz's avatar
xuxz committed
117
浏览器上打开 `http://{server-name}:{server-port}`,即可访问 swagger,查阅 RESTful API 的详细信息。
zhouxiang's avatar
zhouxiang committed
118
119
120

可以用命令行,在控制台与 server 通信(在新启的命令行页面下执行):

xuxz's avatar
xuxz committed
121
122
```bash
# restful_api_url 就是 api_server 产生的,即上述启动server的http://{server-name}:{server-port}
zhouxiang's avatar
zhouxiang committed
123
124
125
126
127
lmdeploy serve api_client restful_api_url
```

或者,启动 gradio,在 webui 的聊天对话框中,与服务交流:

xuxz's avatar
xuxz committed
128
```bash
zhouxiang's avatar
zhouxiang committed
129
# restful_api_url 就是 api_server 产生的,比如 http://localhost:23333
xuxz's avatar
xuxz committed
130
131
132
# server-name 和 server-port 是用来提供 gradio ui 访问服务的
# 例子: lmdeploy serve gradio http://localhost:23333 --server-name localhost --server-port 6006
lmdeploy serve gradio restful_api_url --server-name {ip} --server-port {port}
zhouxiang's avatar
zhouxiang committed
133
134
```

xuxz's avatar
xuxz committed
135
**需要保证'{server-name}:{server-port}'在外部浏览器中的可访问性**
zhouxiang's avatar
zhouxiang committed
136

zhouxiang's avatar
zhouxiang committed
137
关于 RESTful API的详细介绍,请参考[这份](https://developer.hpccube.com/codes/aicomponent/lmdeploy/-/blob/dtk23.10-v0.1.0/docs/zh_cn/restful_api.md)文档。
zhouxiang's avatar
zhouxiang committed
138

xiabo's avatar
xiabo committed
139
## result
zhouxiang's avatar
zhouxiang committed
140

xiabo's avatar
xiabo committed
141
![qwen推理](docs/qwen推理.gif)
xiabo's avatar
xiabo committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

### 精度



## 应用场景

### 算法类别

`对话问答`


### 热点应用行业

`医疗,科研,金融,教育`
157

lvhan028's avatar
lvhan028 committed
158

xiabo's avatar
xiabo committed
159
160
## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/qwen_lmdeploy
lvhan028's avatar
lvhan028 committed
161

xiabo's avatar
xiabo committed
162
163
## 参考资料
https://github.com/InternLM/LMDeploy