api_server.py 11.7 KB
Newer Older
AllentDan's avatar
AllentDan committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
import time
from http import HTTPStatus
from typing import AsyncGenerator, Optional

import fire
import uvicorn
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import JSONResponse, StreamingResponse

13
from lmdeploy.serve.async_engine import AsyncEngine
AllentDan's avatar
AllentDan committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from lmdeploy.serve.openai.protocol import (  # noqa: E501
    ChatCompletionRequest, ChatCompletionResponse,
    ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse, ChatMessage, DeltaMessage, EmbeddingsRequest,
    EmbeddingsResponse, ErrorResponse, GenerateRequest, ModelCard, ModelList,
    ModelPermission, UsageInfo)

os.environ['TM_LOG_LEVEL'] = 'ERROR'


class VariableInterface:
    """A IO interface maintaining variables."""
    async_engine: AsyncEngine = None
    request_hosts = []


30
app = FastAPI(docs_url='/')
AllentDan's avatar
AllentDan committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257


def get_model_list():
    """Available models.

    Only provided one now.
    """
    return [VariableInterface.async_engine.tm_model.model_name]


@app.get('/v1/models')
def available_models():
    """Show available models."""
    model_cards = []
    for model_name in get_model_list():
        model_cards.append(
            ModelCard(id=model_name,
                      root=model_name,
                      permission=[ModelPermission()]))
    return ModelList(data=model_cards)


def create_error_response(status: HTTPStatus, message: str):
    """Create error response according to http status and message.

    Args:
        status (HTTPStatus): HTTP status codes and reason phrases
        message (str): error message
    """
    return JSONResponse(ErrorResponse(message=message,
                                      type='invalid_request_error').dict(),
                        status_code=status.value)


async def check_request(request) -> Optional[JSONResponse]:
    """Check if a request is valid."""
    if request.model in get_model_list():
        return
    ret = create_error_response(
        HTTPStatus.NOT_FOUND, f'The model `{request.model}` does not exist.')
    return ret


@app.post('/v1/chat/completions')
async def chat_completions_v1(request: ChatCompletionRequest,
                              raw_request: Request = None):
    """Completion API similar to OpenAI's API.

    Refer to  `https://platform.openai.com/docs/api-reference/chat/create`
    for the API specification.

    The request should be a JSON object with the following fields:
    - model: model name. Available from /v1/models.
    - messages: string prompt or chat history in OpenAI format.
    - temperature (float): to modulate the next token probability
    - top_p (float): If set to float < 1, only the smallest set of most
        probable tokens with probabilities that add up to top_p or higher
        are kept for generation.
    - n (int): How many chat completion choices to generate for each input
        message. Only support one here.
    - stream: whether to stream the results or not. Default to false.
    - max_tokens (int): output token nums
    - repetition_penalty (float): The parameter for repetition penalty.
        1.0 means no penalty

    Additional arguments supported by LMDeploy:
    - renew_session (bool): Whether renew the session. Can be used when the
        session length is exceeded.
    - ignore_eos (bool): indicator for ignoring eos

    Currently we do not support the following features:
    - function_call (Users should implement this by themselves)
    - logit_bias (not supported yet)
    - presence_penalty (replaced with repetition_penalty)
    - frequency_penalty (replaced with repetition_penalty)
    """
    instance_id = int(raw_request.client.host.replace('.', ''))

    error_check_ret = await check_request(request)
    if error_check_ret is not None:
        return error_check_ret

    model_name = request.model
    request_id = str(instance_id)
    created_time = int(time.time())

    result_generator = VariableInterface.async_engine.generate_openai(
        request.messages,
        instance_id,
        request.stream,
        request.renew_session,
        request_output_len=request.max_tokens if request.max_tokens else 512,
        stop=request.stop,
        top_p=request.top_p,
        temperature=request.temperature,
        repetition_penalty=request.repetition_penalty,
        ignore_eos=request.ignore_eos)

    async def abort_request() -> None:
        async for _ in VariableInterface.async_engine.generate_openai(
                request.messages,
                instance_id,
                request.stream,
                request.renew_session,
                stop=True):
            pass

    def create_stream_response_json(
        index: int,
        text: str,
        finish_reason: Optional[str] = None,
    ) -> str:
        choice_data = ChatCompletionResponseStreamChoice(
            index=index,
            delta=DeltaMessage(role='assistant', content=text),
            finish_reason=finish_reason,
        )
        response = ChatCompletionStreamResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=[choice_data],
        )
        response_json = response.json(ensure_ascii=False)

        return response_json

    async def completion_stream_generator() -> AsyncGenerator[str, None]:
        # First chunk with role
        for i in range(request.n):
            choice_data = ChatCompletionResponseStreamChoice(
                index=i,
                delta=DeltaMessage(role='assistant'),
                finish_reason=None,
            )
            chunk = ChatCompletionStreamResponse(id=request_id,
                                                 choices=[choice_data],
                                                 model=model_name)
            data = chunk.json(exclude_unset=True, ensure_ascii=False)
            yield f'data: {data}\n\n'

        async for res in result_generator:
            response_json = create_stream_response_json(
                index=0,
                text=res.response,
            )
            yield f'data: {response_json}\n\n'
        yield 'data: [DONE]\n\n'

    # Streaming response
    if request.stream:
        background_tasks = BackgroundTasks()
        # Abort the request if the client disconnects.
        background_tasks.add_task(abort_request)
        return StreamingResponse(completion_stream_generator(),
                                 media_type='text/event-stream',
                                 background=background_tasks)

    # Non-streaming response
    final_res = None
    async for res in result_generator:
        if await raw_request.is_disconnected():
            # Abort the request if the client disconnects.
            await abort_request()
            return create_error_response(HTTPStatus.BAD_REQUEST,
                                         'Client disconnected')
        final_res = res
    assert final_res is not None
    choices = []
    choice_data = ChatCompletionResponseChoice(
        index=0,
        message=ChatMessage(role='assistant', content=final_res.response),
        finish_reason=final_res.finish_reason,
    )
    choices.append(choice_data)

    total_tokens = sum([
        final_res.history_token_len, final_res.input_token_len,
        final_res.generate_token_len
    ])
    usage = UsageInfo(
        prompt_tokens=final_res.input_token_len,
        completion_tokens=final_res.generate_token_len,
        total_tokens=total_tokens,
    )
    response = ChatCompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
    )

    return response


@app.post('/v1/embeddings')
async def create_embeddings(request: EmbeddingsRequest,
                            raw_request: Request = None):
    """Creates embeddings for the text."""
    error_check_ret = await check_request(request)
    if error_check_ret is not None:
        return error_check_ret

    embedding = await VariableInterface.async_engine.get_embeddings(
        request.input)
    data = [{'object': 'embedding', 'embedding': embedding, 'index': 0}]
    token_num = len(embedding)
    return EmbeddingsResponse(
        data=data,
        model=request.model,
        usage=UsageInfo(
            prompt_tokens=token_num,
            total_tokens=token_num,
            completion_tokens=None,
        ),
    ).dict(exclude_none=True)


@app.post('/generate')
async def generate(request: GenerateRequest, raw_request: Request = None):
    """Generate completion for the request.

    The request should be a JSON object with the following fields:
    - prompt: the prompt to use for the generation.
    - instance_id: determine which instance will be called. If not specified
        with a value other than -1, using host ip directly.
258
259
260
261
    - sequence_start (bool): indicator for starting a sequence.
    - sequence_end (bool): indicator for ending a sequence
    - stream: whether to stream the results or not.
    - stop: whether to stop the session response or not.
AllentDan's avatar
AllentDan committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    - request_output_len (int): output token nums
    - step (int): the offset of the k/v cache
    - top_p (float): If set to float < 1, only the smallest set of most
        probable tokens with probabilities that add up to top_p or higher
        are kept for generation.
    - top_k (int): The number of the highest probability vocabulary
        tokens to keep for top-k-filtering
    - temperature (float): to modulate the next token probability
    - repetition_penalty (float): The parameter for repetition penalty.
        1.0 means no penalty
    - ignore_eos (bool): indicator for ignoring eos
    """
    if request.instance_id == -1:
        instance_id = int(raw_request.client.host.replace('.', ''))
        request.instance_id = instance_id

    generation = VariableInterface.async_engine.generate(
        request.prompt,
        request.instance_id,
        stream_response=request.stream,
        sequence_start=request.sequence_start,
        sequence_end=request.sequence_end,
        request_output_len=request.request_output_len,
        top_p=request.top_p,
        top_k=request.top_k,
287
        stop=request.stop,
AllentDan's avatar
AllentDan committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        temperature=request.temperature,
        repetition_penalty=request.repetition_penalty,
        ignore_eos=request.ignore_eos)

    # Streaming case
    async def stream_results() -> AsyncGenerator[bytes, None]:
        async for out in generation:
            ret = {
                'text': out.response,
                'tokens': out.generate_token_len,
                'finish_reason': out.finish_reason
            }
            yield (json.dumps(ret) + '\0').encode('utf-8')

    if request.stream:
        return StreamingResponse(stream_results())
    else:
        ret = {}
        async for out in generation:
            ret = {
                'text': out.response,
                'tokens': out.generate_token_len,
                'finish_reason': out.finish_reason
            }
        return JSONResponse(ret)


def main(model_path: str,
         server_name: str = 'localhost',
         server_port: int = 23333,
         instance_num: int = 32,
         tp: int = 1):
    """An example to perform model inference through the command line
    interface.

    Args:
        model_path (str): the path of the deployed model
        server_name (str): host ip for serving
        server_port (int): server port
        instance_num (int): number of instances of turbomind model
        tp (int): tensor parallel
    """
    VariableInterface.async_engine = AsyncEngine(model_path=model_path,
                                                 instance_num=instance_num,
                                                 tp=tp)
    uvicorn.run(app=app, host=server_name, port=server_port, log_level='info')


if __name__ == '__main__':
    fire.Fire(main)