async_engine.py 9.52 KB
Newer Older
AllentDan's avatar
AllentDan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) OpenMMLab. All rights reserved.
import asyncio
import dataclasses
import os.path as osp
import random
from typing import Literal, Optional

from lmdeploy import turbomind as tm
from lmdeploy.model import MODELS, BaseModel
from lmdeploy.turbomind.tokenizer import Tokenizer


@dataclasses.dataclass
class GenOut:
    """Pack all response information together."""
    response: str
    history_token_len: int
    input_token_len: int
    generate_token_len: int
    finish_reason: Optional[Literal['stop', 'length']] = None


class AsyncEngine:
    """Async inference engine. Maintaining a bunch of tm_model instances.

    Args:
        model_path (str): the path of the deployed model
        instance_num (int): instance numbers to be created
        tp (int): tensor parallel
    """

    def __init__(self, model_path, instance_num=32, tp=1) -> None:
        tokenizer_model_path = osp.join(model_path, 'triton_models',
                                        'tokenizer')
        tokenizer = Tokenizer(tokenizer_model_path)
        self.tm_model = tm.TurboMind(model_path,
                                     eos_id=tokenizer.eos_token_id,
                                     tp=tp)
        self.tokenizer = tokenizer
        self.generators = [
            self.tm_model.create_instance() for i in range(instance_num)
        ]
        self.instance_num = instance_num
        self.model: BaseModel = MODELS.get(self.tm_model.model_name)()
        self.available = [True] * instance_num
        self.starts = [None] * instance_num
        self.steps = {}

    async def get_embeddings(self, prompt):
        prompt = self.model.get_prompt(prompt)
        input_ids = self.tokenizer.encode(prompt)
        return input_ids

    async def get_generator(self, instance_id):
        """Only return the model instance if it is available."""
        while self.available[instance_id] is False:
            await asyncio.sleep(0.1)
        return self.generators[instance_id]

    async def generate(
        self,
        messages,
        instance_id,
        stream_response=True,
        sequence_start=True,
        sequence_end=False,
        step=0,
        request_output_len=512,
        stop=False,
        top_k=40,
        top_p=0.8,
        temperature=0.8,
        repetition_penalty=1.0,
        ignore_eos=False,
    ):
        """Generate responses.

        Args:
            messages (str | List): chat history or prompt
            instance_id (int): actually request host ip
            stream_response (bool): whether return responses streamingly
            request_output_len (int): output token nums
            sequence_start (bool): indicator for starting a sequence
            sequence_end (bool): indicator for ending a sequence
            step (int): the offset of the k/v cache
            stop (bool): whether stop inference
            top_p (float): If set to float < 1, only the smallest set of most
              probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
            top_k (int): The number of the highest probability vocabulary
              tokens to keep for top-k-filtering
            temperature (float): to modulate the next token probability
            repetition_penalty (float): The parameter for repetition penalty.
              1.0 means no penalty
            ignore_eos (bool): indicator for ignoring eos
        """
        session_id = instance_id
        instance_id %= self.instance_num
        if str(session_id) not in self.steps:
            self.steps[str(session_id)] = 0
        if step != 0:
            self.steps[str(session_id)] = step
        seed = random.getrandbits(64)
        prompt = self.model.messages2prompt(messages, sequence_start)
        input_ids = self.tokenizer.encode(prompt)
        finish_reason = 'stop' if stop else None
        if self.steps[str(session_id)] + len(
                input_ids) >= self.tm_model.session_len:
            finish_reason = 'length'
            yield GenOut('', self.steps[str(session_id)], len(input_ids), 0,
                         finish_reason)
        else:
            generator = await self.get_generator(instance_id)
            self.available[instance_id] = False
            response_size = 0
            async for outputs in generator.async_stream_infer(
                    session_id=session_id,
                    input_ids=[input_ids],
                    stream_output=stream_response,
                    request_output_len=request_output_len,
                    sequence_start=(sequence_start),
                    sequence_end=sequence_end,
                    step=self.steps[str(session_id)],
                    stop=stop,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    repetition_penalty=repetition_penalty,
                    ignore_eos=ignore_eos,
                    random_seed=seed if sequence_start else None):
                res, tokens = outputs[0]
                # decode res
                response = self.tokenizer.decode(res[response_size:])
                # response, history token len, input token len, gen token len
                yield GenOut(response, self.steps[str(session_id)],
                             len(input_ids), tokens, finish_reason)
                response_size = tokens

            # update step
            self.steps[str(session_id)] += len(input_ids) + tokens
            if sequence_end:
                self.steps[str(session_id)] = 0
            self.available[instance_id] = True

    async def generate_openai(
        self,
        messages,
        instance_id,
        stream_response=True,
        renew_session=False,
        request_output_len=512,
        stop=False,
        top_k=40,
        top_p=0.8,
        temperature=0.8,
        repetition_penalty=1.0,
        ignore_eos=False,
    ):
        """Generate responses.

        Args:
            messages (str | List): chat history or prompt
            instance_id (int): actually request host ip
            stream_response (bool): whether return responses streamingly
            renew_session (bool): renew the session
            request_output_len (int): output token nums
            stop (bool): whether stop inference
            top_p (float): If set to float < 1, only the smallest set of most
              probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
            top_k (int): The number of the highest probability vocabulary
              tokens to keep for top-k-filtering
            temperature (float): to modulate the next token probability
            repetition_penalty (float): The parameter for repetition penalty.
              1.0 means no penalty
            ignore_eos (bool): indicator for ignoring eos
        """
        session_id = instance_id
        instance_id %= self.instance_num
        sequence_start = False
        generator = await self.get_generator(instance_id)
        self.available[instance_id] = False
        if renew_session and str(session_id) in self.steps and self.steps[str(
                session_id)] > 0:  # renew a session
            empty_prompt = self.model.messages2prompt('', False)
            empty_input_ids = self.tokenizer.encode(empty_prompt)
            for outputs in generator.stream_infer(session_id=session_id,
                                                  input_ids=[empty_input_ids],
                                                  request_output_len=1,
                                                  sequence_start=False,
                                                  sequence_end=True):
                pass
            self.steps[str(session_id)] = 0
        if str(session_id) not in self.steps:
            self.steps[str(session_id)] = 0
        if self.steps[str(session_id)] == 0:
            sequence_start = True
        seed = random.getrandbits(64)
        prompt = self.model.messages2prompt(messages, sequence_start)
        input_ids = self.tokenizer.encode(prompt)
        finish_reason = 'stop' if stop else None
        if self.steps[str(session_id)] + len(
                input_ids) >= self.tm_model.session_len:
            finish_reason = 'length'
            yield GenOut('', self.steps[str(session_id)], len(input_ids), 0,
                         finish_reason)
        else:
            response_size = 0
            async for outputs in generator.async_stream_infer(
                    session_id=session_id,
                    input_ids=[input_ids],
                    stream_output=stream_response,
                    request_output_len=request_output_len,
                    sequence_start=(sequence_start),
                    sequence_end=False,
                    step=self.steps[str(session_id)],
                    stop=stop,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    repetition_penalty=repetition_penalty,
                    ignore_eos=ignore_eos,
                    random_seed=seed if sequence_start else None):
                res, tokens = outputs[0]
                # decode res
                response = self.tokenizer.decode(res[response_size:])
                # response, history token len, input token len, gen token len
                yield GenOut(response, self.steps[str(session_id)],
                             len(input_ids), tokens, finish_reason)
                response_size = tokens

            # update step
            self.steps[str(session_id)] += len(input_ids) + tokens
        self.available[instance_id] = True