utils.py 3.13 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
from typing import List, Union
lvhan028's avatar
lvhan028 committed
3
4
5
6
7
8
9

import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.utils import np_to_triton_dtype


def prepare_tensor(name, input_tensor):
lvhan028's avatar
lvhan028 committed
10
    """Create grpcclient's InferInput instance according to a given tensor."""
lvhan028's avatar
lvhan028 committed
11
12
13
14
15
16
17
    t = grpcclient.InferInput(name, list(input_tensor.shape),
                              np_to_triton_dtype(input_tensor.dtype))
    t.set_data_from_numpy(input_tensor)
    return t


class Preprocessor:
lvhan028's avatar
lvhan028 committed
18
19
20
21
22
23
    """Tokenize prompts.

    Args:
        tritonserver_addr (str): the communication address of the inference
          server
    """
lvhan028's avatar
lvhan028 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

    def __init__(self, tritonserver_addr: str):
        self.tritonserver_addr = tritonserver_addr
        self.model_name = 'preprocessing'

    def __call__(self, *args, **kwargs):
        return self.infer(*args, **kwargs)

    def infer(self, prompts: Union[str, List[str]]) -> tuple:
        """Tokenize the input prompts.

        Args:
            prompts(str | List[str]): user's prompt, or a batch prompts

        Returns:
            Tuple(numpy.ndarray, numpy.ndarray, numpy.ndarray): prompt's token
            ids, ids' length and requested output length
        """
        if isinstance(prompts, str):
            input0 = [[prompts]]
        elif isinstance(prompts, List):
            input0 = [[prompt] for prompt in prompts]
        else:
            assert 0, f'str or List[str] prompts are expected but got ' \
                      f'{type(prompts)}'

        input0_data = np.array(input0).astype(object)
        output0_len = np.ones_like(input0).astype(np.uint32)
        inputs = [
            prepare_tensor('QUERY', input0_data),
            prepare_tensor('REQUEST_OUTPUT_LEN', output0_len)
        ]

        with grpcclient.InferenceServerClient(self.tritonserver_addr) as \
                client:
            result = client.infer(self.model_name, inputs)
            output0 = result.as_numpy('INPUT_ID')
            output1 = result.as_numpy('REQUEST_INPUT_LEN')
        return output0, output1


class Postprocessor:
lvhan028's avatar
lvhan028 committed
66
67
68
69
70
71
    """De-tokenize prompts.

    Args:
        tritonserver_addr (str): the communication address of the inference
          server
    """
lvhan028's avatar
lvhan028 committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    def __init__(self, tritonserver_addr: str):
        self.tritonserver_addr = tritonserver_addr

    def __call__(self, *args, **kwargs):
        return self.infer(*args, **kwargs)

    def infer(self, output_ids: np.ndarray, seqlen: np.ndarray):
        """De-tokenize tokens for text.

        Args:
            output_ids(np.ndarray): tokens' id
            seqlen(np.ndarray): sequence length

        Returns:
            str: decoded tokens
        """
        inputs = [
            prepare_tensor('TOKENS_BATCH', output_ids),
            prepare_tensor('sequence_length', seqlen)
        ]
        inputs[0].set_data_from_numpy(output_ids)
        inputs[1].set_data_from_numpy(seqlen)
        model_name = 'postprocessing'
        with grpcclient.InferenceServerClient(self.tritonserver_addr) \
                as client:
            result = client.infer(model_name, inputs)
            output0 = result.as_numpy('OUTPUT')
        return output0