awq.py 5.94 KB
Newer Older
pppppM's avatar
pppppM committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List

import torch

# Maps that describe the structure of your model.
NORM_FCS_MAP = {
    'LlamaDecoderLayer': {
        'input_layernorm':
        ['self_attn.k_proj', 'self_attn.q_proj', 'self_attn.v_proj'],
        'post_attention_layernorm': ['mlp.gate_proj', 'mlp.up_proj']
    },
    'InternLMDecoderLayer': {
        'input_layernorm':
        ['self_attn.k_proj', 'self_attn.q_proj', 'self_attn.v_proj'],
        'post_attention_layernorm': ['mlp.gate_proj', 'mlp.up_proj']
    }
}

FC_FCS_MAP = {
    'LlamaDecoderLayer': {
        'self_attn.v_proj': ['self_attn.o_proj'],
        'mlp.up_proj': ['mlp.down_proj']
    },
    'InternLMDecoderLayer': {
        'self_attn.v_proj': ['self_attn.o_proj'],
        'mlp.up_proj': ['mlp.down_proj']
    }
}


@torch.no_grad()
def get_weight_scale(weight, q_group_size=-1):
    org_shape = weight.shape
    if q_group_size > 0:
        weight = weight.view(-1, q_group_size)
    scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
    scale = scale.view(org_shape)
    scale = scale.mean(0)
    return scale


@torch.no_grad()
def smooth_ln_fcs(ln: torch.nn.Module,
                  fcs: List[torch.nn.Module],
                  act_scales: torch.Tensor,
                  group_size: int = -1,
                  alpha: float = 0.5) -> torch.Tensor:
    """Smooth weights of a layer normalization and its fully connected layers.

    :param ln: Layer Normalization module
    :param fcs: List of Fully Connected modules
    :param act_scales: Activation scales
    :param alpha: Scaling factor (default is 0.5)
    :return: Scales
    """
    device, dtype = fcs[0].weight.device, fcs[0].weight.dtype
    act_scales = act_scales.to(device=device, dtype=dtype)

    concat_w = torch.cat([fc.weight for fc in fcs], dim=0)
    w_scales = get_weight_scale(concat_w, group_size)

    scales = (act_scales.pow(alpha) /
              w_scales.pow(1 - alpha)).clamp(min=1e-4).to(device).to(dtype)
    scales = scales / (scales.max() * scales.min()).sqrt()

    ln.weight.div_(scales)
    if hasattr(ln, 'bias'):
        ln.bias.div_(scales)

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))

    for p in ln.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0
    return scales


@torch.no_grad()
def smooth_fc_fcs(pre_fc: torch.nn.Module,
                  fcs: List[torch.nn.Module],
                  act_scales: torch.Tensor,
                  group_size: int = -1,
                  alpha: float = 0.5) -> torch.Tensor:
    """Smooth weights of a fully connected layer and its downstream layers.

    :param pre_fc: Previous Fully Connected layer
    :param fcs: List of Fully Connected modules
    :param act_scales: Activation scales
    :param alpha: Scaling factor (default is 0.5)
    :return: Scales
    """
    device, dtype = pre_fc.weight.device, pre_fc.weight.dtype
    act_scales = act_scales.to(device=device, dtype=dtype)

    concat_w = torch.cat([fc.weight for fc in fcs], dim=0)
    w_scales = get_weight_scale(concat_w, group_size)

    scales = (act_scales.pow(alpha) /
              w_scales.pow(1 - alpha)).clamp(min=1e-4).to(device).to(dtype)
    scales = scales / (scales.max() * scales.min()).sqrt()

    pre_fc.weight.div_(scales.view(-1, 1))

    if getattr(pre_fc, 'bias', None) is not None:
        pre_fc.bias.div_(scales)

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))

    for p in pre_fc.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0

    return scales


def check_awq_supported(layer_type):
    """Check if the smooth function is supported by inspecting layer type."""
    norm_fcs_found = False
    fc_fcs_found = False

    if isinstance(layer_type, str):
        if layer_type in NORM_FCS_MAP:
            norm_fcs_found = True
        if layer_type in FC_FCS_MAP:
            fc_fcs_found = True

    elif isinstance(layer_type, type):
        if layer_type.__name__ in NORM_FCS_MAP:
            norm_fcs_found = True
        if layer_type.__name__ in FC_FCS_MAP:
            fc_fcs_found = True

    else:
        raise NotImplementedError

    if not norm_fcs_found:
        raise NotImplementedError

    if not fc_fcs_found:
        raise NotImplementedError


def quant_weights(model, fcs, bits, symmetry, group_size=-1, device='cuda'):
    """Quantize the weights of the target model's linear layers."""
    from lmdeploy.lite.quantization import WeightQuantizer
    from lmdeploy.pytorch.modules import WeightOnlyQLinear
    for name, fc in fcs.items():
        fc.to(device)
        quantizer = WeightQuantizer(bits, symmetry, 'per_group', group_size)
        q_linear = WeightOnlyQLinear.from_linear(fc, quantizer)

        parent_name, _, child_name = name.rpartition('.')
        parent = model.get_submodule(parent_name)
        fc.to('cpu')
        setattr(parent, child_name, q_linear)

        print(f'{name} weight packed.')


def smooth_layers(layers,
                  fc2fcs,
                  norm2fcs,
                  a_scales,
                  group_size=-1,
                  device='cuda'):
    """Apply weight smoothing based on input scales."""

    for l_name, layer in layers.items():
        layer.to(device)
        for ln_name, fc_names in norm2fcs.items():
            a_name = [f'{l_name}.{n}' for n in fc_names][0]

            ln = layer.get_submodule(ln_name)
            fcs = [layer.get_submodule(n) for n in fc_names]
            smooth_ln_fcs(ln, fcs, a_scales[a_name], group_size)

        for f_name, fc_names in fc2fcs.items():
            a_name = [f'{l_name}.{n}' for n in fc_names][0]

            fc = layer.get_submodule(f_name)
            fcs = [layer.get_submodule(n) for n in fc_names]
            smooth_fc_fcs(fc, fcs, a_scales[a_name], group_size)

        layer.to('cpu')
        print(f'{l_name} smooth weight done.')