calib_dataloader.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch


def set_seed(seed):
    np.random.seed(seed)
    torch.random.manual_seed(seed)


humu789's avatar
humu789 committed
11
12
13
14
15
16
17
18
19
20
21
22
def get_wikitext2(tokenizer, nsamples, seed, seqlen):
    """Load Wikitext-2 train and test datasets and tokenize.

    Args:
        tokenizer: Tokenizer to encode text.
        nsamples: Number of samples to take from train set.
        seed: Random seed for sampling.
        seqlen: Maximum sequence length.
    Returns:
        train_loader: List of sampled and tokenized training examples.
        test_enc: Full tokenized Wikitext-2 test set.
    """
23
24
25
26
27
28
29
30
31
32
33
    from datasets import load_dataset
    traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
    testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')

    trainenc = tokenizer('\n\n'.join(traindata['text']), return_tensors='pt')
    testenc = tokenizer('\n\n'.join(testdata['text']), return_tensors='pt')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
humu789's avatar
humu789 committed
34
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen)
35
36
37
38
39
40
41
42
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))
    return trainloader, testenc


humu789's avatar
humu789 committed
43
44
45
46
47
48
49
50
51
52
53
54
def get_ptb(tokenizer, nsamples, seed, seqlen):
    """Load PTB train and validation datasets and tokenize.

    Args:
        tokenizer: Tokenizer to encode text.
        nsamples: Number of samples to take from train set.
        seed: Random seed for sampling.
        seqlen: Maximum sequence length.
    Returns:
        train_loader: List of sampled and tokenized training examples.
        test_enc: Full tokenized PTB validation set.
    """
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    from datasets import load_dataset
    traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
    valdata = load_dataset('ptb_text_only',
                           'penn_treebank',
                           split='validation')

    trainenc = tokenizer('\n\n'.join(traindata['sentence']),
                         return_tensors='pt')
    testenc = tokenizer('\n\n'.join(valdata['sentence']), return_tensors='pt')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
humu789's avatar
humu789 committed
69
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen)
70
71
72
73
74
75
76
77
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))
    return trainloader, testenc


humu789's avatar
humu789 committed
78
79
80
81
82
83
84
85
86
87
88
89
def get_c4(tokenizer, nsamples, seed, seqlen):
    """Load C4 train and validation datasets and tokenize.

    Args:
        tokenizer: Tokenizer to encode text.
        nsamples: Number of samples to take from train set.
        seed: Random seed for sampling.
        seqlen: Maximum sequence length.
    Returns:
        train_loader: List of sampled and tokenized training examples.
        test_enc: Full tokenized PTB validation set.
    """
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    from datasets import load_dataset
    traindata = load_dataset(
        'allenai/c4',
        'allenai--c4',
        data_files={'train': 'en/c4-train.00000-of-01024.json.gz'},
        split='train',
        use_auth_token=False)
    valdata = load_dataset(
        'allenai/c4',
        'allenai--c4',
        data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'},
        split='validation',
        use_auth_token=False)

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        while True:
            i = random.randint(0, len(traindata) - 1)
            trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
            if trainenc.input_ids.shape[1] >= seqlen:
                break
humu789's avatar
humu789 committed
113
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))

    import random
    random.seed(0)
    valenc = []
    for _ in range(256):
        while True:
            i = random.randint(0, len(valdata) - 1)
            tmp = tokenizer(valdata[i]['text'], return_tensors='pt')
            if tmp.input_ids.shape[1] >= seqlen:
                break
humu789's avatar
humu789 committed
129
        i = random.randint(0, tmp.input_ids.shape[1] - seqlen)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        j = i + seqlen
        valenc.append(tmp.input_ids[:, i:j])
    valenc = torch.hstack(valenc)

    class TokenizerWrapper:

        def __init__(self, input_ids):
            self.input_ids = input_ids

    valenc = TokenizerWrapper(valenc)

    return trainloader, valenc


humu789's avatar
humu789 committed
144
145
146
147
148
149
150
151
152
153
154
155
def get_ptb_new(tokenizer, nsamples, seed, seqlen):
    """Load PTB New train and validation datasets and tokenize.

    Args:
        tokenizer: Tokenizer to encode text.
        nsamples: Number of samples to take from train set.
        seed: Random seed for sampling.
        seqlen: Maximum sequence length.
    Returns:
        train_loader: List of sampled and tokenized training examples.
        test_enc: Full tokenized PTB validation set.
    """
156
157
158
159
160
161
162
163
164
165
166
    from datasets import load_dataset
    traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
    testdata = load_dataset('ptb_text_only', 'penn_treebank', split='test')

    trainenc = tokenizer(' '.join(traindata['sentence']), return_tensors='pt')
    testenc = tokenizer(' '.join(testdata['sentence']), return_tensors='pt')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
humu789's avatar
humu789 committed
167
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen)
168
169
170
171
172
173
174
175
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))
    return trainloader, testenc


humu789's avatar
humu789 committed
176
177
178
179
180
181
182
183
184
185
186
187
def get_c4_new(tokenizer, nsamples, seed, seqlen):
    """Load C4 New train and validation datasets and tokenize.

    Args:
        tokenizer: Tokenizer to encode text.
        nsamples: Number of samples to take from train set.
        seed: Random seed for sampling.
        seqlen: Maximum sequence length.
    Returns:
        train_loader: List of sampled and tokenized training examples.
        test_enc: Full tokenized PTB validation set.
    """
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    from datasets import load_dataset
    traindata = load_dataset(
        'allenai/c4',
        'allenai--c4',
        data_files={'train': 'en/c4-train.00000-of-01024.json.gz'},
        split='train')
    valdata = load_dataset(
        'allenai/c4',
        'allenai--c4',
        data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'},
        split='validation')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        while True:
            i = random.randint(0, len(traindata) - 1)
            trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
            if trainenc.input_ids.shape[1] >= seqlen:
                break
humu789's avatar
humu789 committed
209
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))

    valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
    valenc = valenc.input_ids[:, :(256 * seqlen)]

    class TokenizerWrapper:

        def __init__(self, input_ids):
            self.input_ids = input_ids

    valenc = TokenizerWrapper(valenc)

    return trainloader, valenc


def get_pileval(tokenizer, nsamples, seed, seqlen=512):
humu789's avatar
humu789 committed
230
231
232
233
234
235
236
237
238
239
240
    """Load pileval train dataset and tokenize.

    Args:
        tokenizer: Tokenizer to encode text.
        nsamples: Number of samples to take from train set.
        seed: Random seed for sampling.
        seqlen: Maximum sequence length.
    Returns:
        train_loader: List of sampled and tokenized training examples.
        test_enc: Full tokenized PTB validation set.
    """
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    from datasets import load_dataset
    from datasets.builder import DatasetGenerationError
    try:
        dataset = load_dataset(
            'json',
            data_files='https://the-eye.eu/public/AI/pile/val.jsonl.zst',
            split='train')
    except DatasetGenerationError:
        raise InterruptedError('There have been some issues when generating '
                               'the dataset, you could try to download it '
                               'locally first, and replace the `data_files`'
                               'with local addresses or use other datasets '
                               '(c4, wiki, ptb).')
    dataset = dataset.shuffle(seed=seed)
    samples = []
    n_run = 0
    for data in dataset:
        line = data['text']
        line = line.strip()
        line_encoded = tokenizer.encode(line)
        if len(line_encoded) > 512:
            continue
        sample = torch.tensor([line_encoded])
        if sample.numel() == 0:
            continue
        samples.append(sample)
        n_run += 1
        if n_run == nsamples:
            break
    # now concatenate all samples and split according to block size
    cat_samples = torch.cat(samples, dim=1)
    n_split = cat_samples.shape[1] // seqlen
    print(f' * Split into {n_split} blocks')
    return [
        cat_samples[:, i * seqlen:(i + 1) * seqlen] for i in range(n_split)
    ], None


humu789's avatar
humu789 committed
279
280
def get_calib_loaders(name, tokenizer, nsamples=128, seed=0, seqlen=2048):
    """Get calibration data loaders for a dataset.
281

humu789's avatar
humu789 committed
282
283
284
285
286
287
288
289
290
291
    Args:
      name: Dataset name ('wikitext2', 'ptb', 'c4', etc).
      tokenizer: Tokenizer to encode text.
      nsamples: Number of samples to take from train set.
      seed: Random seed for sampling.
      seqlen: Maximum sequence length.
    Returns:
      train_loader: List of sampled and tokenized training examples.
      test_data: Full tokenized validation set.
    """
292
    if 'wikitext2' in name:
humu789's avatar
humu789 committed
293
        return get_wikitext2(tokenizer, nsamples, seed, seqlen)
294
295
    if 'ptb' in name:
        if 'new' in name:
humu789's avatar
humu789 committed
296
297
            return get_ptb_new(tokenizer, nsamples, seed, seqlen)
        return get_ptb(tokenizer, nsamples, seed, seqlen)
298
299
    if 'c4' in name:
        if 'new' in name:
humu789's avatar
humu789 committed
300
301
            return get_c4_new(tokenizer, nsamples, seed, seqlen)
        return get_c4(tokenizer, nsamples, seed, seqlen)
302
303
304

    if 'pileval' in name:
        return get_pileval(tokenizer, nsamples, seed, seqlen)