"cacheflow/logger.py" did not exist on "7addca5935c83806429d7ec557999a505e6f6a35"
tokenizer.py 6.39 KB
Newer Older
q.yao's avatar
q.yao committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import json
q.yao's avatar
q.yao committed
3
import os.path as osp
4
from typing import Sequence, Union
5

q.yao's avatar
q.yao committed
6
import torch
7

q.yao's avatar
q.yao committed
8

q.yao's avatar
q.yao committed
9
10
class SentencePieceTokenizer:
    """Tokenizer of sentencepiece.
lvhan028's avatar
lvhan028 committed
11
12
13
14

    Args:
        model_file (str): the path of the tokenizer model
    """
q.yao's avatar
q.yao committed
15
16

    def __init__(self, model_file: str):
q.yao's avatar
q.yao committed
17
18
        from sentencepiece import SentencePieceProcessor
        self.model = SentencePieceProcessor(model_file=model_file)
q.yao's avatar
q.yao committed
19

q.yao's avatar
q.yao committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size()

    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_id()

    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_id()
q.yao's avatar
q.yao committed
34
35

    def encode(self, s: str):
lvhan028's avatar
lvhan028 committed
36
37
38
39
40
41
42
        """Tokenize a prompt.

        Args:
            s (str): a prompt
        Returns:
            list[int]: token ids
        """
q.yao's avatar
q.yao committed
43
44
45
46
47
48
49
50
51
        add_bos = False
        add_eos = False
        if s.find('<BOS>') != -1:
            s = s.replace('<BOS>', '')
            add_bos = True
        if s == '<EOS>':
            s = ''
            add_eos = True
        return self.model.Encode(s, add_bos=add_bos, add_eos=add_eos)
q.yao's avatar
q.yao committed
52
53

    def decode(self, t: Sequence[int]):
lvhan028's avatar
lvhan028 committed
54
55
56
57
58
59
60
        """De-tokenize.

        Args:
            t (List[int]): a list of token ids
        Returns:
            str: text of decoding tokens
        """
q.yao's avatar
q.yao committed
61
62
63
        if isinstance(t, torch.Tensor):
            t = t.tolist()
        return self.model.Decode(t)
q.yao's avatar
q.yao committed
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    def __call__(self, s: Union[str, Sequence[str]]):
        """Tokenize prompts.

        Args:
            s (str): prompts
        Returns:
            list[int]: token ids
        """
        import addict
        add_bos = False
        add_eos = False

        input_ids = self.model.Encode(s, add_bos=add_bos, add_eos=add_eos)
        return addict.Addict(input_ids=input_ids)

80

q.yao's avatar
q.yao committed
81
82
class HuggingFaceTokenizer:
    """Tokenizer of sentencepiece.
lvhan028's avatar
lvhan028 committed
83
84

    Args:
q.yao's avatar
q.yao committed
85
        model_dir (str): the directory of the tokenizer model
lvhan028's avatar
lvhan028 committed
86
    """
87

q.yao's avatar
q.yao committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def __init__(self, model_dir: str):
        from transformers import AutoTokenizer
        model_file = osp.join(model_dir, 'tokenizer.model')
        backend_tokenizer_file = osp.join(model_dir, 'tokenizer.json')
        model_file_exists = osp.exists(model_file)
        if not osp.exists(backend_tokenizer_file) and model_file_exists:
            print('WARNING: Can not find tokenizer.json. '
                  'It may take long time to initialize the tokenizer.')
        self.model = AutoTokenizer.from_pretrained(model_dir,
                                                   trust_remote_code=True)
        # save tokenizer.json to reuse
        if not osp.exists(backend_tokenizer_file) and model_file_exists:
            if hasattr(self.model, 'backend_tokenizer'):
                self.model.backend_tokenizer.save(backend_tokenizer_file)
q.yao's avatar
q.yao committed
102

103
104
105
106
107
108
109
        if self.model.eos_token_id is None:
            generation_config_file = osp.join(model_dir,
                                              'generation_config.json')
            with open(generation_config_file, 'r') as f:
                cfg = json.load(f)
                self.model.eos_token_id = cfg['eos_token_id']

q.yao's avatar
q.yao committed
110
111
112
113
    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size
q.yao's avatar
q.yao committed
114

q.yao's avatar
q.yao committed
115
116
117
118
    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_token_id
q.yao's avatar
q.yao committed
119

q.yao's avatar
q.yao committed
120
121
122
123
124
125
126
    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_token_id

    def encode(self, s: str):
        """Tokenize a prompt.
q.yao's avatar
q.yao committed
127

q.yao's avatar
q.yao committed
128
129
        Args:
            s (str): a prompt
q.yao's avatar
q.yao committed
130
        Returns:
q.yao's avatar
q.yao committed
131
            list[int]: token ids
q.yao's avatar
q.yao committed
132
        """
q.yao's avatar
q.yao committed
133
134
135
136
137
138
139
140
        add_special_tokens = False
        if s.find('<BOS>') != -1:
            s = s.replace('<BOS>', '<s>')
        if s == '<EOS>':
            s = '</s>'
        if len(s) == 0:
            add_special_tokens = True
        return self.model.encode(s, add_special_tokens=add_special_tokens)
141

q.yao's avatar
q.yao committed
142
143
144
145
146
147
148
149
150
151
    def decode(self, t: Sequence[int]):
        """De-tokenize.

        Args:
            t (List[int]): a list of token ids
        Returns:
            str: text of decoding tokens
        """
        skip_special_tokens = True
        return self.model.decode(t, skip_special_tokens=skip_special_tokens)
q.yao's avatar
q.yao committed
152

153
154
155
156
157
158
159
160
161
162
163
    def __call__(self, s: Union[str, Sequence[str]]):
        """Tokenize prompts.

        Args:
            s (str): prompts
        Returns:
            list[int]: token ids
        """
        add_special_tokens = False
        return self.model(s, add_special_tokens=add_special_tokens)

q.yao's avatar
q.yao committed
164

q.yao's avatar
q.yao committed
165
166
class Tokenizer:
    """Tokenize prompts or de-tokenize tokens into texts.
lvhan028's avatar
lvhan028 committed
167
168

    Args:
q.yao's avatar
q.yao committed
169
        model_file (str): the path of the tokenizer model
lvhan028's avatar
lvhan028 committed
170
    """
171

q.yao's avatar
q.yao committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def __init__(self, model_file: str):
        if model_file.endswith('.model'):
            model_folder = osp.split(model_file)[0]
        else:
            model_folder = model_file
            model_file = osp.join(model_folder, 'tokenizer.model')
        tokenizer_config_file = osp.join(model_folder, 'tokenizer_config.json')

        model_file_exists = osp.exists(model_file)
        config_exists = osp.exists(tokenizer_config_file)
        use_hf_model = config_exists or not model_file_exists

        if not use_hf_model:
            self.model = SentencePieceTokenizer(model_file)
        else:
            self.model = HuggingFaceTokenizer(model_folder)

    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size
q.yao's avatar
q.yao committed
193

q.yao's avatar
q.yao committed
194
195
196
197
    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_token_id
q.yao's avatar
q.yao committed
198

q.yao's avatar
q.yao committed
199
200
201
202
203
204
205
    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_token_id

    def encode(self, s: str):
        """Tokenize a prompt.
q.yao's avatar
q.yao committed
206
207

        Args:
q.yao's avatar
q.yao committed
208
209
210
211
212
213
214
215
            s (str): a prompt
        Returns:
            list[int]: token ids
        """
        return self.model.encode(s)

    def decode(self, t: Sequence[int]):
        """De-tokenize.
q.yao's avatar
q.yao committed
216

q.yao's avatar
q.yao committed
217
218
        Args:
            t (List[int]): a list of token ids
q.yao's avatar
q.yao committed
219
        Returns:
q.yao's avatar
q.yao committed
220
            str: text of decoding tokens
q.yao's avatar
q.yao committed
221
        """
q.yao's avatar
q.yao committed
222
        return self.model.decode(t)
223
224
225
226
227
228
229
230
231
232

    def __call__(self, s: Union[str, Sequence[str]]):
        """Tokenize prompts.

        Args:
            s (str): prompts
        Returns:
            list[int]: token ids
        """
        return self.model(s)