turbomind.py 6.7 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
3
4
5
import sys
from typing import Iterable, List

q.yao's avatar
q.yao committed
6
import numpy as np
7
import torch
q.yao's avatar
q.yao committed
8
9
from torch.nn.utils.rnn import pad_sequence

10
11
import lmdeploy

q.yao's avatar
q.yao committed
12
13
14
# TODO: find another way import _turbomind
lmdeploy_dir = osp.split(lmdeploy.__file__)[0]
sys.path.append(osp.join(lmdeploy_dir, 'lib'))
15
import _turbomind as _tm  # noqa: E402
q.yao's avatar
q.yao committed
16
17
18
19
20
21


def _stop_words(stop_words: List[int]):
    if stop_words is None:
        return None
    assert isinstance(stop_words, List) and \
22
23
24
           all(isinstance(elem, int) for elem in stop_words), \
           f'stop_words must be a list but got {type(stop_words)}'

q.yao's avatar
q.yao committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    # each id in stop_words represents a stop word
    # refer to https://github.com/fauxpilot/fauxpilot/discussions/165 for
    # detailed explanation about fastertransformer's stop_words
    stop_word_offsets = range(1, len(stop_words) + 1)
    stop_words = np.array([[stop_words, stop_word_offsets]]).astype(np.int32)
    return stop_words


def _np_dict_to_tm_dict(np_dict: dict):
    ret = _tm.TensorMap()
    for k, v in np_dict.items():
        ret[k] = _tm.from_dlpack(v)

    return ret


def _tm_dict_to_torch_dict(tm_dict: _tm.TensorMap):
    ret = dict()
    for k, v in tm_dict.items():
        if v.type == _tm.DataType.TYPE_UINT32:
            v = v.view(_tm.DataType.TYPE_INT32)
        ret[k] = torch.from_dlpack(v)

    return ret


class TurboMind:

    def __init__(self,
                 model_path: str,
                 data_type: str = 'fp16',
                 session_len: int = 2048,
                 eos_id: int = 2,
                 stop_words: List[int] = None,
                 device_id: int = 0,
                 node_id: int = 0,
                 device_num: int = 1,
                 node_num: int = 1):
        self.eos_id = eos_id

        # create model instance
        self.node_id = node_id
        self.node_num = node_num
        self.gpu_count = device_num
        self.device_id = device_id
        self.world_size = self.node_num * self.gpu_count
        self.rank = self.node_id * self.gpu_count + self.device_id
        self.session_len = session_len

        weight_dir = osp.join(model_path, 'triton_models', 'weights')
        model = _tm.AbstractTransformerModel.create_llama_model(
            weight_dir, tensor_para_size=self.gpu_count, data_type=data_type)
        model.create_shared_weights(self.device_id, self.rank)
        self.model = model
        self.stop_words = _stop_words(stop_words)

    def create_instance(self, stream=0):
        return TurboMindInstance(self, stream)


class TurboMindInstance:

    def __init__(self, tm_model, stream=0):
        self.tm_model = tm_model

        self.device_id = tm_model.device_id
        self.rank = tm_model.rank
        self.stop_words = tm_model.stop_words
        self.eos_id = tm_model.eos_id
        self.session_len = tm_model.session_len
        self.stream = stream

        # create instance
        model = tm_model.model
        nccl_params = model.create_nccl_params(tm_model.node_id)
        custom_comms = model.create_custom_comms(tm_model.world_size)
        instance_comm = model.create_instance_comm(tm_model.gpu_count)

        model_inst = model.create_model_instance(self.device_id, self.rank,
                                                 self.stream, nccl_params,
                                                 custom_comms[0])
        self.model_inst = model_inst
        self.instance_comm = instance_comm

    def stream_infer(self,
                     session_id,
                     input_ids,
                     request_output_len: int = 512,
                     sequence_start: bool = True,
                     sequence_end: bool = False,
                     step=1,
                     stop=False,
                     top_p=0.8,
                     top_k=40,
                     temperature=0.8,
                     repetition_penalty=1.05,
                     ignore_eos=False,
                     random_seed=None):

        if len(input_ids) == 0:
            input_ids = []
        if isinstance(input_ids[0], int):
            input_ids = [input_ids]

        batch_size = len(input_ids)

        def _broadcast_np(data, dtype, shape=(batch_size, )):
            if isinstance(data, Iterable):
                assert len(data) == batch_size
                return data

            return np.full(shape, data, dtype=dtype)

        input_ids = [torch.IntTensor(ids) for ids in input_ids]
        input_lengths = torch.IntTensor([len(ids) for ids in input_ids])
140
141
142
        input_ids = pad_sequence(input_ids,
                                 batch_first=True,
                                 padding_value=self.eos_id)
q.yao's avatar
q.yao committed
143
144
145
146
147
148
149
150
151
        input_lengths = input_lengths.detach().cpu().numpy()

        if isinstance(session_id, int):
            session_id = [session_id]
        assert len(session_id) == batch_size

        inputs = dict(
            input_ids=input_ids,
            input_lengths=input_lengths,
152
153
154
            request_output_len=np.full(input_lengths.shape,
                                       request_output_len,
                                       dtype=np.uint32),
q.yao's avatar
q.yao committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            runtime_top_k=_broadcast_np(top_k, np.uint32),
            runtime_top_p=_broadcast_np(top_p, np.float32),
            temperature=_broadcast_np(temperature, np.float32),
            repetition_penalty=_broadcast_np(repetition_penalty, np.float32),
            step=_broadcast_np(step, np.int32),

            # session input
            session_len=self.session_len *
            np.ones([
                batch_size,
            ], dtype=np.uint32),
            START=_broadcast_np((1 if sequence_start else 0), np.int32),
            END=_broadcast_np((1 if sequence_end else 0), np.int32),
            CORRID=np.array(session_id, dtype=np.uint64),
            STOP=_broadcast_np((1 if stop else 0), np.int32))

        if ignore_eos:
            stop_words = None
            bad_words = torch.tensor([[[self.eos_id], [1]]], dtype=torch.int32)
        else:
            stop_words = self.stop_words
            bad_words = None

        if stop_words is not None:
            inputs['stop_words_list'] = stop_words
        if bad_words is not None:
            inputs['bad_words_list'] = bad_words

        if random_seed is not None:
            inputs['random_seed'] = _broadcast_np(random_seed, np.uint64)
        tm_inputs = _np_dict_to_tm_dict(inputs)
        tm_outputs = self.model_inst.forward(tm_inputs, self.instance_comm)

        outputs = _tm_dict_to_torch_dict(tm_outputs)

        # TODO: Add stream output
        output_ids = outputs['output_ids'][:, 0, :]
        sequence_length = outputs['sequence_length'].long()[:, 0]
        return [[(output[:l], l.item())]
                for output, l in zip(output_ids, sequence_length)]