chat.py 2 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import os.path as osp
3
4
import random

q.yao's avatar
q.yao committed
5
import fire
6
7
from transformers import AutoTokenizer

q.yao's avatar
q.yao committed
8
9
10
11
12
13
14
15
16
17
from lmdeploy import turbomind as tm
from lmdeploy.model import MODELS


def input_prompt():
    print('\ndouble enter to end input >>> ', end='')
    sentinel = ''  # ends when this string is seen
    return '\n'.join(iter(input, sentinel))


18
def main(model_name, model_path, session_id: int = 1):
q.yao's avatar
q.yao committed
19
20
    tm_model = tm.TurboMind(model_path)
    generator = tm_model.create_instance()
21
    tokenizer_model_path = osp.join(model_path, 'triton_models', 'tokenizer')
q.yao's avatar
q.yao committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_model_path)
    model = MODELS.get(model_name)()

    nth_round = 1
    step = 0
    seed = random.getrandbits(64)

    while True:
        prompt = input_prompt()
        if prompt == 'exit':
            exit(0)
        elif prompt == 'end':
            pass
        else:
            prompt = model.get_prompt(prompt, nth_round == 1)
            input_ids = tokenizer.encode(prompt, add_special_tokens=False)
            for outputs in generator.stream_infer(
                    session_id=session_id,
                    input_ids=[input_ids],
                    request_output_len=512,
                    sequence_start=(nth_round == 1),
                    sequence_end=False,
                    step=step,
                    stop=False,
                    top_k=40,
                    top_p=0.8,
                    temperature=0.8,
                    repetition_penalty=1.05,
                    ignore_eos=False,
                    random_seed=seed if nth_round == 1 else None):
                res, tokens = outputs[0]
                # decode res
54
55
                response = tokenizer.decode(res[step:],
                                            skip_special_tokens=True)
q.yao's avatar
q.yao committed
56
57
58
59
60
61
62
63
64
                print(f'session {session_id}, {tokens}, {response}')
                # update step
                step = tokens - 1

        nth_round += 1


if __name__ == '__main__':
    fire.Fire(main)