chatbot.py 23.9 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) OpenMMLab. All rights reserved.
import json
import logging
import queue
import random
import threading
from dataclasses import dataclass
from enum import Enum
from functools import partial
from typing import List, Union

import google.protobuf.json_format
import mmengine
import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.grpc.service_pb2 import ModelInferResponse

lvhan028's avatar
lvhan028 committed
18
from lmdeploy.model import MODELS
19
20
from lmdeploy.serve.turbomind.utils import (Postprocessor, Preprocessor,
                                            prepare_tensor)
lvhan028's avatar
lvhan028 committed
21
22
23
24
25
26


@dataclass
class Session:
    session_id: Union[int, str]
    request_id: str = ''
lvhan028's avatar
lvhan028 committed
27
    histories: str = ''  # history conversations of the session
lvhan028's avatar
lvhan028 committed
28
    sequence_length: int = 0  # the total generated token number in the session
lvhan028's avatar
lvhan028 committed
29
    prompt: str = ''
lvhan028's avatar
lvhan028 committed
30
31
32
33
34
35
36
    response: str = ''
    status: int = None  # status of the session


class StatusCode(Enum):
    TRITON_STREAM_END = 0  # end of streaming
    TRITON_STREAM_ING = 1  # response is in streaming
37
    TRITON_SESSION_READY = 2  # session is ready for inference
lvhan028's avatar
lvhan028 committed
38
39
40
41
42
43
44
    TRITON_SERVER_ERR = -1  # triton server's error
    TRITON_SESSION_CLOSED = -2  # session has been closed
    TRITON_SESSION_OUT_OF_LIMIT = -3  # request length out of limit
    TRITON_SESSION_INVALID_ARG = -4  # invalid argument


def stream_callback(que, result, error):
lvhan028's avatar
lvhan028 committed
45
    """callback function invoked by triton client."""
lvhan028's avatar
lvhan028 committed
46
47
48
49
50
51
52
53
    if error:
        print(error)
        que.put(dict(errcode=StatusCode.TRITON_SERVER_ERR, errmsg=f'{error}'))
    else:
        que.put(result.get_response(as_json=True))


def get_logger(log_file=None, log_level=logging.INFO):
lvhan028's avatar
lvhan028 committed
54
    """Return the logger."""
lvhan028's avatar
lvhan028 committed
55
56
57
58
59
60
    from .utils import get_logger
    logger = get_logger('service.ft', log_file=log_file, log_level=log_level)
    return logger


class Chatbot:
61
    """Chatbot for LLaMA series models with turbomind as inference engine.
lvhan028's avatar
lvhan028 committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    Args:
        tritonserver_addr (str): communicating address '<ip>:<port>' of
            triton inference server
        model_name (str): name of the to-be-deployed mode
        session_len (int): the maximum context length of the model
        top_p (float): If set to float < 1, only the smallest set of most
            probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
        top_k (int): The number of the highest probability vocabulary tokens to
            keep for top-k-filtering
        temperature (float): to modulate the next token probability
        repetition_penalty (float): The parameter for repetition penalty.
            1.0 means no penalty
        log_level (int): the level of the log
        display (bool): display the generated text on consolo or not
lvhan028's avatar
lvhan028 committed
78
        profile_generation (bool): profile token generation or not
lvhan028's avatar
lvhan028 committed
79
80
81
82
83
84
    """

    def __init__(self,
                 tritonserver_addr: str,
                 model_name: str,
                 session_len: int = 2048,
85
86
87
                 top_p: float = 0.8,
                 top_k: int = None,
                 temperature: float = 0.8,
lvhan028's avatar
lvhan028 committed
88
                 repetition_penalty: float = 1.0,
lvhan028's avatar
lvhan028 committed
89
                 ignore_eos: bool = False,
lvhan028's avatar
lvhan028 committed
90
                 log_level: int = logging.INFO,
lvhan028's avatar
lvhan028 committed
91
92
93
94
95
96
97
98
                 display: bool = False,
                 profile_generation: bool = False,
                 profile_serving: bool = False):
        assert model_name in MODELS.module_dict.keys(), \
            f"'{model_name}' is not supported. " \
            f'The supported models are: {MODELS.module_dict.keys()}'
        self.model_name = model_name
        self.model = MODELS.get(self.model_name)()
lvhan028's avatar
lvhan028 committed
99
100
        self._session = None
        self.tritonserver_addr = tritonserver_addr
lvhan028's avatar
lvhan028 committed
101
102
103
104
105
106
107
108
109
        self.preprocess = Preprocessor(tritonserver_addr)
        self.postprocess = Postprocessor(tritonserver_addr)
        self.bos_id = self._get_bos()
        self.eos_id = self._get_eos()
        stop_words = self._stop_words(self.model.stop_words)
        bad_words = None
        if ignore_eos:
            stop_words = None
            bad_words = np.array([[[self.eos_id], [1]]], dtype=np.int32)
lvhan028's avatar
lvhan028 committed
110
        self.cfg = mmengine.Config(
lvhan028's avatar
lvhan028 committed
111
112
113
114
115
116
117
            dict(session_len=session_len,
                 top_p=top_p,
                 top_k=top_k,
                 temperature=temperature,
                 repetition_penalty=repetition_penalty,
                 stop_words=stop_words,
                 bad_words=bad_words))
lvhan028's avatar
lvhan028 committed
118
119
        self.log_level = log_level
        self.display = display
lvhan028's avatar
lvhan028 committed
120
121
        self.profile_generation = profile_generation
        self.profile_serving = profile_serving
lvhan028's avatar
lvhan028 committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def stream_infer(self,
                     session_id: int,
                     prompt: str,
                     request_id: str = '',
                     request_output_len: int = None,
                     sequence_start: bool = False,
                     sequence_end: bool = False,
                     *args,
                     **kwargs):
        """Start a new round conversion of a session.

        Args:
            session_id (int): the identical id of a session
            prompt (str): user's prompt in this round conversation
            request_id (str): the identical id of this round conversation
            request_output_len (int): the expected generated token numbers
            sequence_start (bool): start flag of a session
            sequence_end (bool): end flag of a session
        Returns:
            iterator: The generated content by chatbot
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'

        logger = get_logger(log_level=self.log_level)
        logger.info(f'session {session_id}, request_id {request_id}, '
                    f'request_output_len {request_output_len}')

        if self._session is None:
            sequence_start = True
            self._session = Session(session_id=session_id)
        elif self._session.status == 0:
            logger.error(f'session {session_id} has been ended. Please set '
                         f'`sequence_start` be True if you want to restart it')
            yield StatusCode.TRITON_SESSION_CLOSED, '', 0
            return

        self._session.status = 1
        self._session.request_id = request_id
        self._session.response = ''

lvhan028's avatar
lvhan028 committed
164
165
166
        self._session.prompt = self._get_prompt(prompt, sequence_start)
        for status, res, tokens in self._stream_infer(self._session,
                                                      self._session.prompt,
lvhan028's avatar
lvhan028 committed
167
168
169
170
                                                      request_output_len,
                                                      sequence_start,
                                                      sequence_end):
            yield status, res, tokens
171
172
            if status.value < 0:
                return
lvhan028's avatar
lvhan028 committed
173
174
175
        self._session.histories = \
            self._session.histories + self._session.prompt + \
            self._session.response
lvhan028's avatar
lvhan028 committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    def end(self, session_id: int, *args, **kwargs):
        """end a session. Triton inference server will release the session's
        occupied resource when it is ended.

        Args:
            session_id (int): the identical id of a session

        Returns:
            int: 0: success, -1: session not found
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'

        logger = get_logger(log_level=self.log_level)
        logger.info(f'end session: {session_id}')

        if self._session is None:
            logger.error(
                f"session {session_id} doesn't exist. It cannot be ended")
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.session_id != session_id:
            logger.error(f'you cannot end session {session_id}, because this '
                         f'session is {self._session.session_id}')
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.status == 0:
            logger.warning(f'session {session_id} has already been ended')
            return StatusCode.TRITON_SESSION_CLOSED

        self._session.status = 0
lvhan028's avatar
lvhan028 committed
206
207
208
209
210
        for status, _, _ in self._stream_infer(self._session,
                                               prompt='',
                                               request_output_len=0,
                                               sequence_start=False,
                                               sequence_end=True):
lvhan028's avatar
lvhan028 committed
211
212
            if status != StatusCode.TRITON_STREAM_END:
                return status
q.yao's avatar
q.yao committed
213
214

        self.reset_session()
lvhan028's avatar
lvhan028 committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        return StatusCode.TRITON_STREAM_END

    def cancel(self, session_id: int, *args, **kwargs):
        """Cancel the session during generating tokens.

        Args:
            session_id (int): the identical id of a session

        Returns:
            int: 0: success, -1: session not found
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'
        logger = get_logger(log_level=self.log_level)
        logger.info(f'cancel session: {session_id}')

        if self._session is None:
            logger.error(
                f"session {session_id} doesn't exist. It cannot be cancelled")
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.session_id != session_id:
            logger.error(
                f'you cannot cancel session {session_id}, because this '
                f'session is {self._session.session_id}')
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.status == 0:
            logger.error(f'session {session_id} has already been ended. '
                         f'It cannot be cancelled')
            return StatusCode.TRITON_SESSION_CLOSED

        prev_session = self._session
lvhan028's avatar
lvhan028 committed
246
247
248
249
250
251
        for status, res, _ in self._stream_infer(self._session,
                                                 prompt='',
                                                 request_output_len=0,
                                                 sequence_start=False,
                                                 sequence_end=False,
                                                 cancel=True):
lvhan028's avatar
lvhan028 committed
252
253
254
255
            if status.value < 0:
                break
        if status == StatusCode.TRITON_STREAM_END:
            logger.info(f'cancel session {session_id} successfully')
lvhan028's avatar
lvhan028 committed
256
            if prev_session.histories:
lvhan028's avatar
lvhan028 committed
257
258
259
260
261
                logger.warn(f'TODO: start to recover session {session_id}')
        else:
            logger.info(f'cancel session {session_id} failed: {res}')
        return status

lvhan028's avatar
lvhan028 committed
262
    def reset_session(self):
lvhan028's avatar
lvhan028 committed
263
        """reset session."""
lvhan028's avatar
lvhan028 committed
264
265
        self._session = None

266
267
268
269
270
271
272
273
274
275
    @property
    def session(self):
        """get session."""
        return self._session

    @session.setter
    def session(self, value):
        """set session."""
        self._session = value

lvhan028's avatar
lvhan028 committed
276
    def _get_bos(self):
lvhan028's avatar
lvhan028 committed
277
        """return bos token id."""
lvhan028's avatar
lvhan028 committed
278
279
280
281
        token_ids, _ = self.preprocess('<BOS>')
        return token_ids[0][0]

    def _get_eos(self):
lvhan028's avatar
lvhan028 committed
282
        """return eos token id."""
lvhan028's avatar
lvhan028 committed
283
284
285
286
        token_ids, _ = self.preprocess('<EOS>')
        return token_ids[0][0]

    def _stop_words(self, stop_words: List[int]):
lvhan028's avatar
lvhan028 committed
287
        """return stop-words' token ids."""
lvhan028's avatar
lvhan028 committed
288
289
290
291
292
293
294
        if stop_words is None:
            return None
        assert isinstance(stop_words, List) and \
               all(isinstance(elem, int) for elem in stop_words), \
               f'stop_words must be a list but got {type(stop_words)}'
        # each id in stop_words represents a stop word
        # refer to https://github.com/fauxpilot/fauxpilot/discussions/165 for
295
        # detailed explanation about turbomind's stop_words
lvhan028's avatar
lvhan028 committed
296
297
298
299
300
        stop_word_offsets = range(1, len(stop_words) + 1)
        stop_words = np.array([[stop_words,
                                stop_word_offsets]]).astype(np.int32)
        return stop_words

lvhan028's avatar
lvhan028 committed
301
    def _get_prompt(self, prompt: str, sequence_start: bool):
lvhan028's avatar
lvhan028 committed
302
303
        """return the concatenated prompt according to the model's chat
        template."""
lvhan028's avatar
lvhan028 committed
304
        if self.profile_generation or self.profile_serving:
305
            return prompt
lvhan028's avatar
lvhan028 committed
306
        return self.model.get_prompt(prompt, sequence_start)
lvhan028's avatar
lvhan028 committed
307
308
309
310
311
312
313
314

    def _stream_infer(self,
                      session: Session,
                      prompt: str,
                      request_output_len: int = 512,
                      sequence_start: bool = True,
                      sequence_end: bool = False,
                      cancel: bool = False):
lvhan028's avatar
lvhan028 committed
315
316
317
318
319
320
321
322
323
324
325
326
327
        """communicate with inference server to chat, or cancel a session, or
        end a session.

        Args:
            session (Session): an instance of a session
            prompt (str): the concatenated prompt
            request_output_len (int): the max number of tokens to be generated
            sequence_start (bool): indicator for starting a sequence
            sequence_end (bool): indicator for ending a sequence
            cancel (bool): indicator for cancelling the session
        Yields:
            tuple: status, text, generated token number
        """
lvhan028's avatar
lvhan028 committed
328
329
330
331
332
333
334
335
336
337
338
339
        logger = get_logger(log_level=self.log_level)
        logger.info(f'session {session.session_id}, '
                    f'request id {session.request_id}, '
                    f'request_output_len {request_output_len}, '
                    f'start {sequence_start}, '
                    f'end {sequence_end}, cancel {cancel}')

        assert request_output_len is None or \
               isinstance(request_output_len, int), \
               f'request_output_len is supposed to be None or int, ' \
               f'but got {type(request_output_len)}'

lvhan028's avatar
lvhan028 committed
340
341
342
343
344
345
        if sequence_start:
            logger.info(f'session {session.session_id}, clear history since '
                        f'sequence_start is True')
            session.histories = ''
            session.sequence_length = 0

lvhan028's avatar
lvhan028 committed
346
347
        input_ids, input_lengths = self.preprocess(prompt)
        input_tokens = input_lengths.squeeze()
lvhan028's avatar
lvhan028 committed
348
349
350
        if self.profile_generation:
            yield StatusCode.TRITON_STREAM_ING, \
                  'ignore preprocessing during profiling generation', 0
lvhan028's avatar
lvhan028 committed
351
352
353
354
355
356
357
358
359
360
361
362
        if request_output_len is None:
            request_output_len = max(
                128,
                self.cfg.session_len - session.sequence_length - input_tokens)

        if input_tokens + request_output_len + \
                session.sequence_length > self.cfg.session_len:
            errmsg = f'session {session.session_id}, ' \
                     f'out of max sequence length {self.cfg.session_len}, ' \
                     f'#input tokens {input_tokens}, ' \
                     f'history tokens {session.sequence_length}, ' \
                     f'request length {request_output_len}'
363
            logger.warning(errmsg)
lvhan028's avatar
lvhan028 committed
364
            yield StatusCode.TRITON_SESSION_OUT_OF_LIMIT, errmsg, 0
365
366
            return

lvhan028's avatar
lvhan028 committed
367
        logger.info(f'session {session.session_id}, '
368
                    f'max length: {self.cfg.session_len}, '
lvhan028's avatar
lvhan028 committed
369
370
371
372
373
                    f'input tokens: {input_tokens}, '
                    f'request tokens: {request_output_len}, '
                    f'history tokens: {session.sequence_length}')

        preseq_length = session.sequence_length
lvhan028's avatar
lvhan028 committed
374
        session.response = ''
375
        session.status = StatusCode.TRITON_SESSION_READY
lvhan028's avatar
lvhan028 committed
376
377

        que = queue.Queue()
lvhan028's avatar
lvhan028 committed
378
379
380
381
382
        producer = threading.Thread(target=self._stream_producer,
                                    args=(self.tritonserver_addr, session, que,
                                          self.cfg, input_ids, input_lengths,
                                          request_output_len, sequence_start,
                                          sequence_end, preseq_length, cancel))
lvhan028's avatar
lvhan028 committed
383
        producer.start()
384
385
386
387
388
389
        for state, res, tokens in self.stream_consumer(self.postprocess, que,
                                                       session, input_tokens,
                                                       preseq_length, cancel,
                                                       logger, self.display,
                                                       self.profile_generation,
                                                       self.eos_id):
lvhan028's avatar
lvhan028 committed
390
391
392
            if state.value < 0:
                yield state, res, 0
            else:
393
                yield state, res, tokens
lvhan028's avatar
lvhan028 committed
394
395
396
397
398
399
400
401
402
403
404
        producer.join()
        self._session = que.get()
        curseq_length = self._session.sequence_length
        logger.info(f'session {session.session_id}, pre seq_len '
                    f'{preseq_length}, cur seq_len {curseq_length}, '
                    f'diff {curseq_length - preseq_length}')

    @staticmethod
    def _stream_producer(tritonserver_addr, session, que, cfg, input_ids,
                         input_lengths, request_output_len, sequence_start,
                         sequence_end, preseq_length, cancel):
lvhan028's avatar
lvhan028 committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        """Send a request to the triton inference server.

        Args:
            tritonserver_addr (str): the communication address of the inference
                server
            session (Session): an instance of a session
            que (multiprocessing.Queue): response queue
            cfg:
            input_ids (numpy.ndarray): token ids of input prompt
            input_lengths (numpy.ndarray): length of input_ids
            request_output_len (int): the max number of tokens to be generated
            sequence_start (bool): indicator for starting a sequence
            sequence_end (bool): indicator for ending a sequence
            preseq_length (int): the history sequence length
            cancel (bool): indicator for cancelling the session
        """
lvhan028's avatar
lvhan028 committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        request_output_len = np.full(input_lengths.shape,
                                     request_output_len).astype(np.uint32)

        callback = partial(stream_callback, que)
        with grpcclient.InferenceServerClient(tritonserver_addr) as client:
            inputs = [
                prepare_tensor('input_ids', input_ids),
                prepare_tensor('input_lengths', input_lengths),
                prepare_tensor('request_output_len', request_output_len),
                prepare_tensor('runtime_top_p',
                               cfg.top_p * np.ones((1, 1), dtype=np.float32)),
                prepare_tensor(
                    'temperature',
                    cfg.temperature * np.ones((1, 1), dtype=np.float32)),
                prepare_tensor(
                    'repetition_penalty',
                    cfg.repetition_penalty * np.ones(
                        (1, 1), dtype=np.float32)),
                prepare_tensor('step',
                               preseq_length * np.ones((1, 1), dtype=np.int32))
            ]
442
443
444
445
            if cfg.top_k is not None:
                inputs += prepare_tensor(
                    'runtime_top_k',
                    cfg.top_k * np.ones((1, 1), dtype=np.uint32)),
lvhan028's avatar
lvhan028 committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
            if cfg.stop_words is not None:
                inputs += [prepare_tensor('stop_words_list', cfg.stop_words)]
            if cfg.bad_words is not None:
                inputs += [prepare_tensor('bad_words_list', cfg.bad_words)]

            inputs += [
                prepare_tensor(
                    'session_len',
                    cfg.session_len *
                    np.ones([input_ids.shape[0], 1], dtype=np.uint32)),
                prepare_tensor('START', (1 if sequence_start else 0) * np.ones(
                    (1, 1), dtype=np.int32)),
                prepare_tensor('END', (1 if sequence_end else 0) * np.ones(
                    (1, 1), dtype=np.int32)),
                prepare_tensor(
                    'CORRID',
                    session.session_id * np.ones((1, 1), dtype=np.uint64)),
                prepare_tensor('STOP', (1 if cancel else 0) * np.ones(
                    (1, 1), dtype=np.int32))
            ]
            if sequence_start:
                random_seed = random.getrandbits(64)
                inputs += [
                    prepare_tensor(
                        'random_seed',
                        random_seed * np.ones((1, 1), dtype=np.uint64))
                ]
            client.start_stream(callback)
474
            client.async_stream_infer('turbomind',
lvhan028's avatar
lvhan028 committed
475
476
477
478
479
                                      inputs,
                                      sequence_id=session.session_id,
                                      request_id=session.request_id,
                                      sequence_start=sequence_start,
                                      sequence_end=sequence_end)
lvhan028's avatar
lvhan028 committed
480
481
482
        que.put(None)

    @staticmethod
483
484
485
    def stream_consumer(postprocess, res_queue, session, n_input_token,
                        preseq_length, cancel, logger, display,
                        profile_generation, eos_id):
lvhan028's avatar
lvhan028 committed
486
        """Consume the response from the triton inference server.
lvhan028's avatar
lvhan028 committed
487

lvhan028's avatar
lvhan028 committed
488
489
490
491
492
        Args:
            postprocess (callable): postprocess function for
                the generated tokens
            res_queue (multiprocessing.Queue): response queue
            session (Session): an instance of a session
493
            n_input_token (int): token number of input prompt
lvhan028's avatar
lvhan028 committed
494
495
496
497
498
499
500
501
502
503
            preseq_length (int): the history sequence length
            cancel (bool): indicator for cancelling the session
            logger (util.Logger):
            display (bool): display the text in the consolo interface or not
            profile_generation (bool): indicator for profiling token generation
            eos_id (int): eos token id

        Yields:
            tuple: status, text, generated token number
        """
504
        offset = n_input_token + preseq_length
lvhan028's avatar
lvhan028 committed
505
506
507
        while True:
            result = res_queue.get()
            if result is None:
508
509
                yield (StatusCode.TRITON_STREAM_END, session.response,
                       session.sequence_length - offset)
510
                session.status = StatusCode.TRITON_STREAM_END
lvhan028's avatar
lvhan028 committed
511
512
                break
            if 'errcode' in result:
513
                logger.error(f'got error from turbomind, code '
lvhan028's avatar
lvhan028 committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
                             f"{result['errcode']}, {result['errmsg']}, "
                             f'token {session.sequence_length}')
                session.sequence_length = preseq_length
                yield result['errcode'], result['errmsg'], 0
                break
            if cancel:
                continue
            try:
                message = ModelInferResponse()
                google.protobuf.json_format.Parse(json.dumps(result), message)
                result = grpcclient.InferResult(message)
                sequence_length = result.as_numpy('sequence_length')
                output_ids = result.as_numpy('output_ids')

                session.sequence_length = sequence_length.squeeze()
529
                sequence_length = sequence_length - offset
lvhan028's avatar
lvhan028 committed
530
531
532
533
                last_token_id = output_ids[-1][-1][session.sequence_length - 1]
                if last_token_id == eos_id:
                    session.sequence_length = session.sequence_length - 1
                    sequence_length = sequence_length - 1
lvhan028's avatar
lvhan028 committed
534
535
536
537

                output_ids = output_ids.reshape((1, 1, output_ids.shape[-1]))
                sequence_length = sequence_length.reshape(
                    (1, sequence_length.shape[-1]))
lvhan028's avatar
lvhan028 committed
538
539
540
541
542
543

                if profile_generation:
                    yield (StatusCode.TRITON_STREAM_ING,
                           'postprocessing is ignored during profiling '
                           'token generation', sequence_length.squeeze())
                    continue
544
                output_str = postprocess(output_ids[:, :, offset:],
lvhan028's avatar
lvhan028 committed
545
546
547
                                         sequence_length)
                text = output_str[0].decode()
                if display:
548
549
                    new_text = text[len(session.response):]
                    print(new_text, end='', flush=True)
lvhan028's avatar
lvhan028 committed
550
                session.response = text
551
552
                yield (StatusCode.TRITON_STREAM_ING, session.response,
                       sequence_length.squeeze())
lvhan028's avatar
lvhan028 committed
553
554
555
            except Exception as e:
                logger.error(f'catch exception: {e}')

lvhan028's avatar
lvhan028 committed
556
        session.response = session.response[len(session.prompt):]
lvhan028's avatar
lvhan028 committed
557
558
559
560
561
562
563
        # put session back to queue so that `_stream_infer` can update it in
        # `self.sessions`
        while not res_queue.empty():
            res_queue.get()
        res_queue.put(session)
        if display:
            print('\n')