tokenizer.py 6.06 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
3
from typing import Sequence, Union
4

q.yao's avatar
q.yao committed
5
import torch
6

q.yao's avatar
q.yao committed
7

q.yao's avatar
q.yao committed
8
9
class SentencePieceTokenizer:
    """Tokenizer of sentencepiece.
lvhan028's avatar
lvhan028 committed
10
11
12
13

    Args:
        model_file (str): the path of the tokenizer model
    """
q.yao's avatar
q.yao committed
14
15

    def __init__(self, model_file: str):
q.yao's avatar
q.yao committed
16
17
        from sentencepiece import SentencePieceProcessor
        self.model = SentencePieceProcessor(model_file=model_file)
q.yao's avatar
q.yao committed
18

q.yao's avatar
q.yao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size()

    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_id()

    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_id()
q.yao's avatar
q.yao committed
33
34

    def encode(self, s: str):
lvhan028's avatar
lvhan028 committed
35
36
37
38
39
40
41
        """Tokenize a prompt.

        Args:
            s (str): a prompt
        Returns:
            list[int]: token ids
        """
q.yao's avatar
q.yao committed
42
43
44
45
46
47
48
49
50
        add_bos = False
        add_eos = False
        if s.find('<BOS>') != -1:
            s = s.replace('<BOS>', '')
            add_bos = True
        if s == '<EOS>':
            s = ''
            add_eos = True
        return self.model.Encode(s, add_bos=add_bos, add_eos=add_eos)
q.yao's avatar
q.yao committed
51
52

    def decode(self, t: Sequence[int]):
lvhan028's avatar
lvhan028 committed
53
54
55
56
57
58
59
        """De-tokenize.

        Args:
            t (List[int]): a list of token ids
        Returns:
            str: text of decoding tokens
        """
q.yao's avatar
q.yao committed
60
61
62
        if isinstance(t, torch.Tensor):
            t = t.tolist()
        return self.model.Decode(t)
q.yao's avatar
q.yao committed
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    def __call__(self, s: Union[str, Sequence[str]]):
        """Tokenize prompts.

        Args:
            s (str): prompts
        Returns:
            list[int]: token ids
        """
        import addict
        add_bos = False
        add_eos = False

        input_ids = self.model.Encode(s, add_bos=add_bos, add_eos=add_eos)
        return addict.Addict(input_ids=input_ids)

79

q.yao's avatar
q.yao committed
80
81
class HuggingFaceTokenizer:
    """Tokenizer of sentencepiece.
lvhan028's avatar
lvhan028 committed
82
83

    Args:
q.yao's avatar
q.yao committed
84
        model_dir (str): the directory of the tokenizer model
lvhan028's avatar
lvhan028 committed
85
    """
86

q.yao's avatar
q.yao committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    def __init__(self, model_dir: str):
        from transformers import AutoTokenizer
        model_file = osp.join(model_dir, 'tokenizer.model')
        backend_tokenizer_file = osp.join(model_dir, 'tokenizer.json')
        model_file_exists = osp.exists(model_file)
        if not osp.exists(backend_tokenizer_file) and model_file_exists:
            print('WARNING: Can not find tokenizer.json. '
                  'It may take long time to initialize the tokenizer.')
        self.model = AutoTokenizer.from_pretrained(model_dir,
                                                   trust_remote_code=True)
        # save tokenizer.json to reuse
        if not osp.exists(backend_tokenizer_file) and model_file_exists:
            if hasattr(self.model, 'backend_tokenizer'):
                self.model.backend_tokenizer.save(backend_tokenizer_file)
q.yao's avatar
q.yao committed
101

q.yao's avatar
q.yao committed
102
103
104
105
    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size
q.yao's avatar
q.yao committed
106

q.yao's avatar
q.yao committed
107
108
109
110
    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_token_id
q.yao's avatar
q.yao committed
111

q.yao's avatar
q.yao committed
112
113
114
115
116
117
118
    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_token_id

    def encode(self, s: str):
        """Tokenize a prompt.
q.yao's avatar
q.yao committed
119

q.yao's avatar
q.yao committed
120
121
        Args:
            s (str): a prompt
q.yao's avatar
q.yao committed
122
        Returns:
q.yao's avatar
q.yao committed
123
            list[int]: token ids
q.yao's avatar
q.yao committed
124
        """
q.yao's avatar
q.yao committed
125
126
127
128
129
130
131
132
        add_special_tokens = False
        if s.find('<BOS>') != -1:
            s = s.replace('<BOS>', '<s>')
        if s == '<EOS>':
            s = '</s>'
        if len(s) == 0:
            add_special_tokens = True
        return self.model.encode(s, add_special_tokens=add_special_tokens)
133

q.yao's avatar
q.yao committed
134
135
136
137
138
139
140
141
142
143
    def decode(self, t: Sequence[int]):
        """De-tokenize.

        Args:
            t (List[int]): a list of token ids
        Returns:
            str: text of decoding tokens
        """
        skip_special_tokens = True
        return self.model.decode(t, skip_special_tokens=skip_special_tokens)
q.yao's avatar
q.yao committed
144

145
146
147
148
149
150
151
152
153
154
155
    def __call__(self, s: Union[str, Sequence[str]]):
        """Tokenize prompts.

        Args:
            s (str): prompts
        Returns:
            list[int]: token ids
        """
        add_special_tokens = False
        return self.model(s, add_special_tokens=add_special_tokens)

q.yao's avatar
q.yao committed
156

q.yao's avatar
q.yao committed
157
158
class Tokenizer:
    """Tokenize prompts or de-tokenize tokens into texts.
lvhan028's avatar
lvhan028 committed
159
160

    Args:
q.yao's avatar
q.yao committed
161
        model_file (str): the path of the tokenizer model
lvhan028's avatar
lvhan028 committed
162
    """
163

q.yao's avatar
q.yao committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def __init__(self, model_file: str):
        if model_file.endswith('.model'):
            model_folder = osp.split(model_file)[0]
        else:
            model_folder = model_file
            model_file = osp.join(model_folder, 'tokenizer.model')
        tokenizer_config_file = osp.join(model_folder, 'tokenizer_config.json')

        model_file_exists = osp.exists(model_file)
        config_exists = osp.exists(tokenizer_config_file)
        use_hf_model = config_exists or not model_file_exists

        if not use_hf_model:
            self.model = SentencePieceTokenizer(model_file)
        else:
            self.model = HuggingFaceTokenizer(model_folder)

    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size
q.yao's avatar
q.yao committed
185

q.yao's avatar
q.yao committed
186
187
188
189
    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_token_id
q.yao's avatar
q.yao committed
190

q.yao's avatar
q.yao committed
191
192
193
194
195
196
197
    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_token_id

    def encode(self, s: str):
        """Tokenize a prompt.
q.yao's avatar
q.yao committed
198
199

        Args:
q.yao's avatar
q.yao committed
200
201
202
203
204
205
206
207
            s (str): a prompt
        Returns:
            list[int]: token ids
        """
        return self.model.encode(s)

    def decode(self, t: Sequence[int]):
        """De-tokenize.
q.yao's avatar
q.yao committed
208

q.yao's avatar
q.yao committed
209
210
        Args:
            t (List[int]): a list of token ids
q.yao's avatar
q.yao committed
211
        Returns:
q.yao's avatar
q.yao committed
212
            str: text of decoding tokens
q.yao's avatar
q.yao committed
213
        """
q.yao's avatar
q.yao committed
214
        return self.model.decode(t)
215
216
217
218
219
220
221
222
223
224

    def __call__(self, s: Union[str, Sequence[str]]):
        """Tokenize prompts.

        Args:
            s (str): prompts
        Returns:
            list[int]: token ids
        """
        return self.model(s)