medusa_weight_converter.py 17 KB
Newer Older
guobj's avatar
guobj  
guobj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import ast
from pathlib import Path
from typing import Iterable, List, Optional, Tuple, Union
from addict import Dict
import yaml
import argparse

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from transformers import PretrainedConfig
from safetensors.torch import save_model, safe_open

from vllm.model_executor.layers.linear import UnquantizedLinearMethod
from vllm.model_executor.layers.quantization.base_config import (
    QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs

DEFAULT_VOCAB_PADDING_SIZE = 64

TRAINED_BLOCK_WEIGHT_NAME_TEMPLATE = 'medusa_head.{}.{}.linear.weight'
TRAINED_MEDUSA_HEADS_NEMA_TEMPLATE = 'medusa_head.{}.1.weight'
TRAINED_BLOCK_BIAS_NAME_TEMPLATE = 'medusa_head.{}.{}.linear.bias'

VLLM_BLOCK_WEIGHT_NAME_TEMPLATE = 'blocks.{}.layers.{}.weight'
VLLM_BLOCK_BIAS_NAME_TEMPLATE = 'blocks.{}.layers.{}.bias'
VLLM_MEDUSA_HEADS_WEIGHT_NAME_TEMPLATE = 'lm_heads.{}.weight'


def default_weight_loader(param: torch.Tensor,
                          loaded_weight: torch.Tensor) -> None:
    """Default weight loader."""
    assert param.size() == loaded_weight.size()
    param.data.copy_(loaded_weight)

def pad_vocab_size(vocab_size: int,
                   pad_to: int = DEFAULT_VOCAB_PADDING_SIZE) -> int:
    """Pad the vocab size to the given value."""
    return ((vocab_size + pad_to - 1) // pad_to) * pad_to

class MedusaConfig(PretrainedConfig):
    model_type = "medusa"

    def __init__(self,
                 hidden_size: int = 4096,
                 vocab_size: int = 32001,
                 num_heads: int = 5,
                 num_hidden_layers: int = 1,
                 max_paths: int = 64,
                 topk: int = 10,
                 truncated_vocab_size: Optional[int] = None,
                 **kwargs):

        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.num_heads = num_heads
        self.num_hidden_layers = num_hidden_layers
        self.max_paths = max_paths
        self.topk = topk
        self.max_seq_len = int(2**20)
        self.truncated_vocab_size = vocab_size if truncated_vocab_size is None\
            else truncated_vocab_size
        if "architectures" not in kwargs:
            kwargs["architectures"] = ["MedusaModel"]

        super().__init__(**kwargs)

    @property
    def num_attention_heads(self):
        return 0

    @property
    def num_lookahead_tokens(self):
        return self.num_heads

    @num_lookahead_tokens.setter
    def num_lookahead_tokens(self, num_lookahead_tokens: int):
        self.num_heads = num_lookahead_tokens

class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    Adapted from torch.nn.Embedding, note that we pad the vocabulary size to
    make sure it is divisible by the number of model parallel GPUs.

    In order to support various loading methods, we ensure that LoRA-added
    embeddings are always at the end of TP-sharded tensors. In other words,
    we shard base embeddings and LoRA embeddings separately (both padded),
    and place them in the same tensor.
    In this example, we will have the original vocab size = 1010,
    added vocab size = 16 and padding to 64. Therefore, the total
    vocab size with padding will be 1088 (because we first pad 1010 to
    1024, add 16, and then pad to 1088).
    Therefore, the tensor format looks like the following:
    TP1, rank 0 (no sharding):
                            |< --------BASE-------- >|< -BASE PADDING-- >|< -----LORA------ >|< -LORA PADDING-- >|
    corresponding token_id: |  0  |  1  | ... | 1009 |  -1  | ... |  -1  | 1010 | ... | 1015 |  -1  | ... |  -1  |
                     index: |  0  |  1  | ... | 1009 | 1010 | ... | 1023 | 1024 | ... | 1039 | 1040 | ... | 1087 |

    TP2, rank 0:
                            |< --------------------BASE--------------------- >|< -----LORA------ >|< -LORA PADDING- >|
    corresponding token_id: |  0  |  1  |  2  | ... | 497  | 498 | ...  | 511 | 1000 | ... | 1015 |  -1  | ... |  -1 |
                     index: |  0  |  1  |  2  | ... | 497  | 498 | ...  | 511 | 512  | ... | 527  |  520 | ... | 543 |
    TP2, rank 1:
                            |< -----------BASE----------- >|< -BASE PADDING- >|< -----------LORA PADDING----------- >|
    corresponding token_id: | 512 | 513 | 514 | ... | 1009 | -1  | ...  | -1  |  -1  | ... |  -1  | -1  | ... |   -1 |
                     index: |  0  |  1  |  2  | ... | 497  | 498 | ...  | 511 | 512  | ... | 519  | 520 | ... |  543 |

    Args:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        params_dtype: type of the parameters.
        org_num_embeddings: original vocabulary size (without LoRA).
        padding_size: padding size for the vocabulary.
        quant_config: quant config for the layer
        prefix: full name of the layer in the state dict
    """  # noqa: E501

    def __init__(self,
                 num_embeddings: int,
                 embedding_dim: int,
                 params_dtype: Optional[torch.dtype] = None,
                 org_num_embeddings: Optional[int] = None,
                 padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()

        self.num_embeddings = num_embeddings
        self.padding_size = padding_size
        self.org_vocab_size = org_num_embeddings or num_embeddings
        num_added_embeddings = num_embeddings - self.org_vocab_size
        self.org_vocab_size_padded = pad_vocab_size(self.org_vocab_size,
                                                    self.padding_size)
        self.num_embeddings_padded = pad_vocab_size(
            self.org_vocab_size_padded + num_added_embeddings,
            self.padding_size)
        assert self.org_vocab_size_padded <= self.num_embeddings_padded

        self.embedding_dim = embedding_dim

        linear_method = None
        if quant_config is not None:
            linear_method = quant_config.get_quant_method(self, prefix=prefix)
        if linear_method is None:
            linear_method = UnquantizedLinearMethod()
        self.linear_method: QuantizeMethodBase = linear_method

        if params_dtype is None:
            params_dtype = torch.get_default_dtype()

        self.linear_method.create_weights(self,
                                          self.embedding_dim,
                                          [self.num_embeddings_padded],
                                          self.embedding_dim,
                                          self.num_embeddings_padded,
                                          params_dtype=params_dtype,
                                          weight_loader=self.weight_loader)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        assert param.data.shape == loaded_weight.shape
        param.data.copy_(loaded_weight)

    def forward(self, input_):
        masked_input = input_
        # Get the embeddings.
        output = F.embedding(masked_input.long(), self.weight)
        return output

class ParallelLMHead(VocabParallelEmbedding):
    """Parallelized LM head.

    Output logits weight matrices used in the Sampler. The weight and bias
    tensors are padded to make sure they are divisible by the number of
    model parallel GPUs.

    Args:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        bias: whether to use bias.
        params_dtype: type of the parameters.
        org_num_embeddings: original vocabulary size (without LoRA).
        padding_size: padding size for the vocabulary.
    """

    def __init__(self,
                 num_embeddings: int,
                 embedding_dim: int,
                 bias: bool = False,
                 params_dtype: Optional[torch.dtype] = None,
                 org_num_embeddings: Optional[int] = None,
                 padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__(num_embeddings, embedding_dim, params_dtype,
                         org_num_embeddings, padding_size, quant_config,
                         prefix)
        if bias:
            self.bias = Parameter(
                torch.empty(self.num_embeddings_per_partition,
                            dtype=params_dtype))
            set_weight_attrs(self.bias, {
                "output_dim": 0,
                "weight_loader": self.weight_loader,
            })
        else:
            self.register_parameter("bias", None)

    def forward(self, input_):
        del input_
        raise RuntimeError("LMHead's weights should be used in the sampler.")


class ResidualBlock(nn.Module):

    def __init__(self, hidden_size: int, num_layers: int) -> None:
        super().__init__()

        self.layers = nn.ModuleList([
            nn.Linear(hidden_size, hidden_size)
            for _ in range(num_layers)
        ])
        self.act = nn.SiLU()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for layer in self.layers:
            x = x + self.act(layer(x))
        return x

class Medusa(nn.Module):

    def __init__(self, config: MedusaConfig, **_) -> None:
        super().__init__()
        self.config = config
        self.blocks = nn.ModuleList([
            ResidualBlock(hidden_size=self.config.hidden_size,
                          num_layers=self.config.num_hidden_layers)
            for _ in range(self.config.num_heads)
        ])
        self.orig_vocab_size = config.vocab_size
        self.truncated_vocab_size = config.truncated_vocab_size
        self.unpadded_vocab_size = self.truncated_vocab_size

        self.lm_heads = nn.ModuleList([
            ParallelLMHead(
                self.unpadded_vocab_size,
                config.hidden_size,
                org_num_embeddings=self.truncated_vocab_size,
                padding_size=DEFAULT_VOCAB_PADDING_SIZE,
            ) for _ in range(self.config.num_heads)
        ]) 

        logit_scale = getattr(config, "logit_scale", 1.0)

        self.token_map = None

    def forward(self, hidden_states: torch.Tensor) -> List[torch.Tensor]:
        return [block(hidden_states) for block in self.blocks]

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        params_dict = dict(self.named_parameters())

        weights_map = {}

        for name, loaded_weight in weights:
            name = name.replace("medusa_heads.", "")

            if name == "token_map":
                if self.truncated_vocab_size < self.orig_vocab_size:
                    self.token_map = nn.Parameter(loaded_weight,
                                                  requires_grad=False)
            elif name in params_dict:
                weights_map[name] = loaded_weight

        for name, loaded_weight in weights_map.items():
            if "lm_head" in name and self.token_map is not None and\
                loaded_weight.shape[0] > self.token_map.shape[0]:

                loaded_weight = loaded_weight[self.token_map]

            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)

        if self.token_map is not None:
            self.token_map.to(device=self.lm_heads[0].weight.device)

        assert (self.truncated_vocab_size
                == self.orig_vocab_size) or (self.token_map is not None)

class CustomMedusaConfig(PretrainedConfig):
    model_type = "medusa"

    def __init__(self,
                 name_or_path: str = "S-3000/vllm-medusa-qwen1.5-7b-chat",
                 architectures: list[str] = ["MedusaModel"],
                 hidden_size: int = 4096,
                 model_type: str = "medusa",
                 num_heads: int = 5,
                 num_hidden_layers: int = 1,
                 transformers_version: str = "4.41.2",
                 truncated_vocab_size: Optional[int] = None,
                 vocab_size: int = 151936,
                 medusa_choices:List[List[int]] = None,
                 **kwargs):
        super().__init__(**kwargs)
        self._name_or_path = name_or_path
        self.architectures = architectures
        self.hidden_size = hidden_size
        self.model_type = model_type
        self.num_heads = num_heads
        self.num_hidden_layers = num_hidden_layers
        self.transformers_version = transformers_version
        self.truncated_vocab_size = truncated_vocab_size
        self.vocab_size = vocab_size
        self.medusa_choices = medusa_choices


def main(args):
    medusa_head_num = args.medusa_num_heads
    medusa_num_layers = args.medusa_num_layers

    config = MedusaConfig(hidden_size=args.hidden_size, vocab_size=args.vocab_size, num_heads=medusa_head_num)
    medusa_model = Medusa(config)

    params_dict = dict(medusa_model.named_parameters())

    trained_medusa_model = torch.load(args.medusa_model_path)

    for i in range(medusa_head_num):
        vllm_medusa_head_weight_name = VLLM_MEDUSA_HEADS_WEIGHT_NAME_TEMPLATE.format(i)
        trained_medusa_head_weight_name = TRAINED_MEDUSA_HEADS_NEMA_TEMPLATE.format(i)

        vllm_medusa_head_param = params_dict[vllm_medusa_head_weight_name]
        trained_medusa_head_param = trained_medusa_model[trained_medusa_head_weight_name]
        weight_loader = getattr(vllm_medusa_head_param, "weight_loader",
                                    default_weight_loader)
        weight_loader(vllm_medusa_head_param, trained_medusa_head_param)

    for i in range(medusa_head_num):
        for j in range(medusa_num_layers):
            # load linear weight
            vllm_medusa_block_weight_name = VLLM_BLOCK_WEIGHT_NAME_TEMPLATE.format(i, j)
            trained_medusa_block_weight_name = TRAINED_BLOCK_WEIGHT_NAME_TEMPLATE.format(i, j)

            vllm_medusa_block_param = params_dict[vllm_medusa_block_weight_name]
            trained_medusa_block_param = trained_medusa_model[trained_medusa_block_weight_name]

            weight_loader = getattr(vllm_medusa_block_param, "weight_loader",
                                    default_weight_loader)
            weight_loader(vllm_medusa_block_param, trained_medusa_block_param)

            # load linear bias
            vllm_medusa_block_bias_name = VLLM_BLOCK_BIAS_NAME_TEMPLATE.format(i, j)
            trained_medusa_block_bias_name = TRAINED_BLOCK_BIAS_NAME_TEMPLATE.format(i, j)

            vllm_medusa_block_bias_param = params_dict[vllm_medusa_block_bias_name]
            trained_medusa_block_bias_param = trained_medusa_model[trained_medusa_block_bias_name]

            weight_loader = getattr(vllm_medusa_block_bias_param, "weight_loader",
                                    default_weight_loader)
            weight_loader(vllm_medusa_block_bias_param, trained_medusa_block_bias_param)
    

    if not Path(args.output_dir).is_dir():
        os.makedirs(args.output_dir, exist_ok=True)
    save_model(medusa_model, os.path.join(args.output_dir, "model.safetensors"))
    
    medusa_choices = ast.literal_eval(args.medusa_choices) if args.medusa_choices is not None else None
    to_save_config = CustomMedusaConfig(name_or_path=os.path.join(args.output_dir, "config.json"),
                                        hidden_size=args.hidden_size,
                                        num_heads=medusa_head_num,
                                        num_hidden_layers=medusa_num_layers,
                                        vocab_size=args.vocab_size,
                                        medusa_choices=medusa_choices)
    to_save_config.save_pretrained(args.output_dir)

    # validate weight
    # with safe_open(os.path.join(args.output_dir, "model.safetensors"), framework="pt") as f:
    #     param = f.get_tensor(VLLM_BLOCK_WEIGHT_NAME_TEMPLATE.format(3, 0))
    #     trained_param = trained_medusa_model[TRAINED_BLOCK_WEIGHT_NAME_TEMPLATE.format(3, 0)]
    #     mse_value = torch.nn.functional.mse_loss(param.cpu(), trained_param.cpu())
    #     print("weight mes:", mse_value)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Medusa Model Evaluator")
    parser.add_argument("--medusa_model_path", type=str, required=True,
                        help="Path to the medusa model file.")
    parser.add_argument("--vocab_size", type=int, required=True,
                        help="Vocab size")
    parser.add_argument("--medusa_num_heads", type=int, required=True,
                        help="Number of Medusa heads")
    parser.add_argument("--medusa_num_layers", type=int, required=True,
                        help="Number of Medusa layers")
    parser.add_argument("--hidden_size", type=int, required=True,
                        help="Hidden size")
    parser.add_argument("--output_dir", type=str, required=True,
                        help="Output dir")
    parser.add_argument(
        '--medusa_choices',
        type=str,
        default=None,
        help="Medusa choice to use, if not none, will use Medusa decoding."
        "   E.g.: [[0, 0, 0, 0], [0, 1, 0], [1, 0], [1, 1]] for 9 medusa tokens."
    )
    args = parser.parse_args()
    main(args)