benchmark_paged_attention.py 10.1 KB
Newer Older
guobj's avatar
guobj  
guobj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import random
import time
from typing import List, Optional

import torch

from vllm import _custom_ops as ops
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
                        create_kv_caches_with_random, seed_everything)
import vllm.envs as envs

NUM_BLOCKS = 1024
PARTITION_SIZE = 512


@torch.inference_mode()
def main(
    version: str,
    num_seqs: int,
    seq_len: int,
    num_query_heads: int,
    num_kv_heads: int,
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    seed: int,
    do_profile: bool,
    device: str = "cuda",
    kv_cache_dtype: Optional[str] = None,
) -> None:
    seed_everything(seed)

    scale = float(1.0 / (head_size**0.5))
    query = torch.empty(num_seqs,
                        num_query_heads,
                        head_size,
                        dtype=dtype,
                        device=device)
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads,
                                   dtype=torch.float,
                                   device=device)

    seq_lens = [seq_len for _ in range(num_seqs)]
    max_seq_len = max(seq_lens)
    seq_lens = torch.tensor(seq_lens, dtype=torch.int, device=device)

    # Create the block tables.
    max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
    block_tables_lst: List[List[int]] = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables_lst.append(block_table)

    block_tables = torch.tensor(block_tables_lst,
                                dtype=torch.int,
                                device=device)

    # Create the KV cache.
    key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
                                                            block_size,
                                                            1,
                                                            num_kv_heads,
                                                            head_size,
                                                            kv_cache_dtype,
                                                            dtype,
                                                            device=device)
    key_cache, value_cache = key_caches[0], value_caches[0]

    # Prepare for the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v2":
        num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
        tmp_output = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions, head_size),
            dtype=output.dtype,
            device=output.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions),
            dtype=torch.float32,
            device=output.device,
        )
        max_logits = torch.empty_like(exp_sums)

    def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
        torch.cuda.synchronize()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.perf_counter()

        # Using default kv_scale
        k_scale = v_scale = 1.0

        for _ in range(num_iters):
            if version == "v1":
                if envs.VLLM_USE_OPT_OP:
                    if envs.VLLM_USE_TC_PAGED_ATTN:
                        ops.paged_attention_v1_opt_tc(
                            output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                    else:
                        ops.paged_attention_v1_opt(
                            output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                else:
                    ops.paged_attention_v1(
                    output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
                    k_scale,
                    v_scale,
                )
            elif version == "v2":
                if envs.VLLM_USE_OPT_OP:
                    if envs.VLLM_USE_TC_PAGED_ATTN:
                        ops.paged_attention_v2_opt_tc(
                            output,
                            exp_sums,
                            max_logits,
                            tmp_output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                    else:
                        ops.paged_attention_v2_opt(
                            output,
                            exp_sums,
                            max_logits,
                            tmp_output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                else:
                    ops.paged_attention_v2(
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
                    k_scale,
                    v_scale,
                )
            else:
                raise ValueError(f"Invalid version: {version}")
        torch.cuda.synchronize()

        end_time = time.perf_counter()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        return (end_time - start_time) / num_iters

    # Warmup.
    print("Warming up...")
    run_benchmark = run_cuda_benchmark
    run_benchmark(num_iters=3, profile=False)

    # Benchmark.
    if do_profile:
        latency = run_benchmark(num_iters=1, profile=True)
    else:
        latency = run_benchmark(num_iters=100, profile=False)
    print(f"Kernel running time: {latency * 1000000:.3f} us")


if __name__ == '__main__':
    parser = FlexibleArgumentParser(
        description="Benchmark the paged attention kernel.")
    parser.add_argument("--version",
                        type=str,
                        choices=["v1", "v2"],
                        default="v2")
    parser.add_argument("--batch-size", type=int, default=8)
    parser.add_argument("--seq-len", type=int, default=4096)
    parser.add_argument("--num-query-heads", type=int, default=64)
    parser.add_argument("--num-kv-heads", type=int, default=8)
    parser.add_argument("--head-size",
                        type=int,
                        choices=[64, 80, 96, 112, 120, 128, 192, 256],
                        default=128)
    parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
    parser.add_argument("--use-alibi", action="store_true")
    parser.add_argument("--dtype",
                        type=str,
                        choices=["half", "bfloat16", "float"],
                        default="half")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument(
        "--kv-cache-dtype",
        type=str,
        choices=["auto", "fp8", "fp8_e5m2", "fp8_e4m3"],
        default="auto",
        help="Data type for kv cache storage. If 'auto', will use model "
        "data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
        "ROCm (hcu) supports fp8 (=fp8_e4m3)")
    args = parser.parse_args()
    print(args)

    if args.num_query_heads % args.num_kv_heads != 0:
        raise ValueError("num_query_heads must be divisible by num_kv_heads")
    main(
        version=args.version,
        num_seqs=args.batch_size,
        seq_len=args.seq_len,
        num_query_heads=args.num_query_heads,
        num_kv_heads=args.num_kv_heads,
        head_size=args.head_size,
        block_size=args.block_size,
        use_alibi=args.use_alibi,
        dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
        seed=args.seed,
        do_profile=args.profile,
        kv_cache_dtype=args.kv_cache_dtype,
    )