gmock-actions.h 38.8 KB
Newer Older
Jesse Beder's avatar
Jesse Beder committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29

Jesse Beder's avatar
Jesse Beder committed
30
31
32
33
34

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.

35
36
// GOOGLETEST_CM0002 DO NOT DELETE

Jesse Beder's avatar
Jesse Beder committed
37
38
39
40
41
42
43
44
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_

#ifndef _WIN32_WCE
# include <errno.h>
#endif

#include <algorithm>
45
46
#include <functional>
#include <memory>
Jesse Beder's avatar
Jesse Beder committed
47
#include <string>
48
49
#include <type_traits>
#include <utility>
Jesse Beder's avatar
Jesse Beder committed
50
51
52
53

#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"

54
55
56
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
57
58
#endif

Jesse Beder's avatar
Jesse Beder committed
59
60
61
62
63
64
65
66
67
68
69
70
71
namespace testing {

// To implement an action Foo, define:
//   1. a class FooAction that implements the ActionInterface interface, and
//   2. a factory function that creates an Action object from a
//      const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers.  It also eases ownership
// management as Action objects can now be copied like plain values.

namespace internal {

72
73
74
75
76
77
78
79
80
// BuiltInDefaultValueGetter<T, true>::Get() returns a
// default-constructed T value.  BuiltInDefaultValueGetter<T,
// false>::Get() crashes with an error.
//
// This primary template is used when kDefaultConstructible is true.
template <typename T, bool kDefaultConstructible>
struct BuiltInDefaultValueGetter {
  static T Get() { return T(); }
};
Jesse Beder's avatar
Jesse Beder committed
81
template <typename T>
82
struct BuiltInDefaultValueGetter<T, false> {
Jesse Beder's avatar
Jesse Beder committed
83
84
85
86
87
88
89
90
91
  static T Get() {
    Assert(false, __FILE__, __LINE__,
           "Default action undefined for the function return type.");
    return internal::Invalid<T>();
    // The above statement will never be reached, but is required in
    // order for this function to compile.
  }
};

92
93
94
95
96
97
98
99
100
101
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
// for type T, which is NULL when T is a raw pointer type, 0 when T is
// a numeric type, false when T is bool, or "" when T is string or
// std::string.  In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible.  For any
// other type T, the built-in default T value is undefined, and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
 public:
102
103
  // This function returns true if and only if type T has a built-in default
  // value.
104
105
106
107
108
109
110
111
112
113
  static bool Exists() {
    return ::std::is_default_constructible<T>::value;
  }

  static T Get() {
    return BuiltInDefaultValueGetter<
        T, ::std::is_default_constructible<T>::value>::Get();
  }
};

Jesse Beder's avatar
Jesse Beder committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
 public:
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
};

// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
 public:
  static bool Exists() { return true; }
129
  static T* Get() { return nullptr; }
Jesse Beder's avatar
Jesse Beder committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
};

// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
  template <> \
  class BuiltInDefaultValue<type> { \
   public: \
    static bool Exists() { return true; } \
    static type Get() { return value; } \
  }

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');

// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
#endif

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);

#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_

}  // namespace internal

// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type).  The usage is:
//
//   // Sets the default value for type T to be foo.
//   DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
 public:
  // Sets the default value for type T; requires T to be
  // copy-constructable and have a public destructor.
  static void Set(T x) {
193
194
195
196
197
198
199
200
201
202
203
    delete producer_;
    producer_ = new FixedValueProducer(x);
  }

  // Provides a factory function to be called to generate the default value.
  // This method can be used even if T is only move-constructible, but it is not
  // limited to that case.
  typedef T (*FactoryFunction)();
  static void SetFactory(FactoryFunction factory) {
    delete producer_;
    producer_ = new FactoryValueProducer(factory);
Jesse Beder's avatar
Jesse Beder committed
204
205
206
207
  }

  // Unsets the default value for type T.
  static void Clear() {
208
    delete producer_;
209
    producer_ = nullptr;
Jesse Beder's avatar
Jesse Beder committed
210
211
  }

212
213
  // Returns true if and only if the user has set the default value for type T.
  static bool IsSet() { return producer_ != nullptr; }
Jesse Beder's avatar
Jesse Beder committed
214
215
216
217
218
219
220
221

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
  }

  // Returns the default value for type T if the user has set one;
222
223
  // otherwise returns the built-in default value. Requires that Exists()
  // is true, which ensures that the return value is well-defined.
Jesse Beder's avatar
Jesse Beder committed
224
  static T Get() {
225
226
    return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
                                : producer_->Produce();
Jesse Beder's avatar
Jesse Beder committed
227
228
229
  }

 private:
230
231
232
233
234
235
236
237
238
  class ValueProducer {
   public:
    virtual ~ValueProducer() {}
    virtual T Produce() = 0;
  };

  class FixedValueProducer : public ValueProducer {
   public:
    explicit FixedValueProducer(T value) : value_(value) {}
239
    T Produce() override { return value_; }
240
241
242
243
244
245
246
247
248
249

   private:
    const T value_;
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
  };

  class FactoryValueProducer : public ValueProducer {
   public:
    explicit FactoryValueProducer(FactoryFunction factory)
        : factory_(factory) {}
250
    T Produce() override { return factory_(); }
251
252
253
254
255
256
257

   private:
    const FactoryFunction factory_;
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
  };

  static ValueProducer* producer_;
Jesse Beder's avatar
Jesse Beder committed
258
259
260
261
262
263
264
265
266
267
268
269
270
};

// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
 public:
  // Sets the default value for type T&.
  static void Set(T& x) {  // NOLINT
    address_ = &x;
  }

  // Unsets the default value for type T&.
271
  static void Clear() { address_ = nullptr; }
Jesse Beder's avatar
Jesse Beder committed
272

273
274
  // Returns true if and only if the user has set the default value for type T&.
  static bool IsSet() { return address_ != nullptr; }
Jesse Beder's avatar
Jesse Beder committed
275
276
277
278
279
280
281
282
283
284
285

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
  }

  // Returns the default value for type T& if the user has set one;
  // otherwise returns the built-in default value if there is one;
  // otherwise aborts the process.
  static T& Get() {
286
287
    return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
                               : *address_;
Jesse Beder's avatar
Jesse Beder committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  }

 private:
  static T* address_;
};

// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
 public:
  static bool Exists() { return true; }
  static void Get() {}
};

// Points to the user-set default value for type T.
template <typename T>
305
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
Jesse Beder's avatar
Jesse Beder committed
306
307
308

// Points to the user-set default value for type T&.
template <typename T>
309
T* DefaultValue<T&>::address_ = nullptr;
Jesse Beder's avatar
Jesse Beder committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  ActionInterface() {}
  virtual ~ActionInterface() {}

  // Performs the action.  This method is not const, as in general an
  // action can have side effects and be stateful.  For example, a
  // get-the-next-element-from-the-collection action will need to
  // remember the current element.
  virtual Result Perform(const ArgumentTuple& args) = 0;

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};

// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called.  The implementation of Action<T> is just a
334
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
Jesse Beder's avatar
Jesse Beder committed
335
336
337
338
339
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
340
341
342
343
344
345
346
347
348
349
350
351
352
  // Adapter class to allow constructing Action from a legacy ActionInterface.
  // New code should create Actions from functors instead.
  struct ActionAdapter {
    // Adapter must be copyable to satisfy std::function requirements.
    ::std::shared_ptr<ActionInterface<F>> impl_;

    template <typename... Args>
    typename internal::Function<F>::Result operator()(Args&&... args) {
      return impl_->Perform(
          ::std::forward_as_tuple(::std::forward<Args>(args)...));
    }
  };

Jesse Beder's avatar
Jesse Beder committed
353
354
355
356
357
358
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  // Constructs a null Action.  Needed for storing Action objects in
  // STL containers.
359
  Action() {}
Jesse Beder's avatar
Jesse Beder committed
360

361
362
363
364
365
366
367
  // Construct an Action from a specified callable.
  // This cannot take std::function directly, because then Action would not be
  // directly constructible from lambda (it would require two conversions).
  template <typename G,
            typename = typename ::std::enable_if<
                ::std::is_constructible<::std::function<F>, G>::value>::type>
  Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT
Jesse Beder's avatar
Jesse Beder committed
368

369
370
371
  // Constructs an Action from its implementation.
  explicit Action(ActionInterface<F>* impl)
      : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
Jesse Beder's avatar
Jesse Beder committed
372
373
374

  // This constructor allows us to turn an Action<Func> object into an
  // Action<F>, as long as F's arguments can be implicitly converted
375
  // to Func's and Func's return type can be implicitly converted to F's.
Jesse Beder's avatar
Jesse Beder committed
376
  template <typename Func>
377
  explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
Jesse Beder's avatar
Jesse Beder committed
378

379
380
  // Returns true if and only if this is the DoDefault() action.
  bool IsDoDefault() const { return fun_ == nullptr; }
Jesse Beder's avatar
Jesse Beder committed
381
382
383
384
385
386
387

  // Performs the action.  Note that this method is const even though
  // the corresponding method in ActionInterface is not.  The reason
  // is that a const Action<F> means that it cannot be re-bound to
  // another concrete action, not that the concrete action it binds to
  // cannot change state.  (Think of the difference between a const
  // pointer and a pointer to const.)
388
389
390
391
392
  Result Perform(ArgumentTuple args) const {
    if (IsDoDefault()) {
      internal::IllegalDoDefault(__FILE__, __LINE__);
    }
    return internal::Apply(fun_, ::std::move(args));
Jesse Beder's avatar
Jesse Beder committed
393
394
395
  }

 private:
396
397
  template <typename G>
  friend class Action;
Jesse Beder's avatar
Jesse Beder committed
398

399
400
  // fun_ is an empty function if and only if this is the DoDefault() action.
  ::std::function<F> fun_;
Jesse Beder's avatar
Jesse Beder committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
};

// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
//   class FooAction {
//    public:
//     template <typename Result, typename ArgumentTuple>
//     Result Perform(const ArgumentTuple& args) const {
//       // Processes the arguments and returns a result, using
415
//       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
Jesse Beder's avatar
Jesse Beder committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
//     }
//     ...
//   };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction.  See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
 public:
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}

  template <typename F>
  operator Action<F>() const {
    return Action<F>(new MonomorphicImpl<F>(impl_));
  }

 private:
  template <typename F>
  class MonomorphicImpl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}

443
    Result Perform(const ArgumentTuple& args) override {
Jesse Beder's avatar
Jesse Beder committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
      return impl_.template Perform<Result>(args);
    }

   private:
    Impl impl_;

    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
  };

  Impl impl_;

  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
};

// Creates an Action from its implementation and returns it.  The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
  return Action<F>(impl);
}

// Creates a polymorphic action from its implementation.  This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
//   MakePolymorphicAction(foo);
// vs
//   PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
  return PolymorphicAction<Impl>(impl);
}

namespace internal {

479
480
481
482
// Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type.
template <typename T>
struct ByMoveWrapper {
483
  explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
484
485
486
  T payload;
};

Jesse Beder's avatar
Jesse Beder committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
//   Foo foo;
//   X x(&foo);
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed.  If copying X just copies a reference to foo,
// that copy will be left with a hanging reference.  If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
511
512
513
// The real life example of the above scenario happens when an invocation
// of gtl::Container() is passed into Return.
//
Jesse Beder's avatar
Jesse Beder committed
514
515
516
517
518
519
template <typename R>
class ReturnAction {
 public:
  // Constructs a ReturnAction object from the value to be returned.
  // 'value' is passed by value instead of by const reference in order
  // to allow Return("string literal") to compile.
520
  explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
Jesse Beder's avatar
Jesse Beder committed
521
522
523
524

  // This template type conversion operator allows Return(x) to be
  // used in ANY function that returns x's type.
  template <typename F>
525
  operator Action<F>() const {  // NOLINT
Jesse Beder's avatar
Jesse Beder committed
526
527
528
529
530
531
532
533
534
535
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename Function<F>::Result Result;
    GTEST_COMPILE_ASSERT_(
536
        !std::is_reference<Result>::value,
Jesse Beder's avatar
Jesse Beder committed
537
        use_ReturnRef_instead_of_Return_to_return_a_reference);
538
539
    static_assert(!std::is_void<Result>::value,
                  "Can't use Return() on an action expected to return `void`.");
540
    return Action<F>(new Impl<R, F>(value_));
Jesse Beder's avatar
Jesse Beder committed
541
542
543
544
  }

 private:
  // Implements the Return(x) action for a particular function type F.
545
  template <typename R_, typename F>
Jesse Beder's avatar
Jesse Beder committed
546
547
548
549
550
551
552
553
554
555
556
557
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    // The implicit cast is necessary when Result has more than one
    // single-argument constructor (e.g. Result is std::vector<int>) and R
    // has a type conversion operator template.  In that case, value_(value)
    // won't compile as the compiler doesn't known which constructor of
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
    // Result without considering explicit constructors, thus resolving the
    // ambiguity. value_ is then initialized using its copy constructor.
558
    explicit Impl(const std::shared_ptr<R>& value)
559
560
        : value_before_cast_(*value),
          value_(ImplicitCast_<Result>(value_before_cast_)) {}
Jesse Beder's avatar
Jesse Beder committed
561

562
    Result Perform(const ArgumentTuple&) override { return value_; }
Jesse Beder's avatar
Jesse Beder committed
563
564

   private:
565
    GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
Jesse Beder's avatar
Jesse Beder committed
566
                          Result_cannot_be_a_reference_type);
567
568
569
    // We save the value before casting just in case it is being cast to a
    // wrapper type.
    R value_before_cast_;
Jesse Beder's avatar
Jesse Beder committed
570
571
    Result value_;

572
573
574
575
576
577
578
579
580
581
582
    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
  };

  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
  // move its contents instead.
  template <typename R_, typename F>
  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

583
    explicit Impl(const std::shared_ptr<R>& wrapper)
584
585
        : performed_(false), wrapper_(wrapper) {}

586
    Result Perform(const ArgumentTuple&) override {
587
588
589
      GTEST_CHECK_(!performed_)
          << "A ByMove() action should only be performed once.";
      performed_ = true;
590
      return std::move(wrapper_->payload);
591
592
593
594
    }

   private:
    bool performed_;
595
    const std::shared_ptr<R> wrapper_;
596

Jesse Beder's avatar
Jesse Beder committed
597
598
599
    GTEST_DISALLOW_ASSIGN_(Impl);
  };

600
  const std::shared_ptr<R> value_;
Jesse Beder's avatar
Jesse Beder committed
601
602
603
604
605
606
607

  GTEST_DISALLOW_ASSIGN_(ReturnAction);
};

// Implements the ReturnNull() action.
class ReturnNullAction {
 public:
608
609
610
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
  // pointer type on compile time.
Jesse Beder's avatar
Jesse Beder committed
611
612
  template <typename Result, typename ArgumentTuple>
  static Result Perform(const ArgumentTuple&) {
613
    return nullptr;
Jesse Beder's avatar
Jesse Beder committed
614
615
616
617
618
619
620
621
622
  }
};

// Implements the Return() action.
class ReturnVoidAction {
 public:
  // Allows Return() to be used in any void-returning function.
  template <typename Result, typename ArgumentTuple>
  static void Perform(const ArgumentTuple&) {
623
    static_assert(std::is_void<Result>::value, "Result should be void.");
Jesse Beder's avatar
Jesse Beder committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
  }
};

// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
 public:
  // Constructs a ReturnRefAction object from the reference to be returned.
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT

  // This template type conversion operator allows ReturnRef(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRef(x) when Return(x)
    // should be used, and generates some helpful error message.
644
    GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
Jesse Beder's avatar
Jesse Beder committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
                          use_Return_instead_of_ReturnRef_to_return_a_value);
    return Action<F>(new Impl<F>(ref_));
  }

 private:
  // Implements the ReturnRef(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT

659
    Result Perform(const ArgumentTuple&) override { return ref_; }
Jesse Beder's avatar
Jesse Beder committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

   private:
    T& ref_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  T& ref_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
};

// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
 public:
  // Constructs a ReturnRefOfCopyAction object from the reference to
  // be returned.
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT

  // This template type conversion operator allows ReturnRefOfCopy(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(
691
        std::is_reference<Result>::value,
Jesse Beder's avatar
Jesse Beder committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    return Action<F>(new Impl<F>(value_));
  }

 private:
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const T& value) : value_(value) {}  // NOLINT

706
    Result Perform(const ArgumentTuple&) override { return value_; }
Jesse Beder's avatar
Jesse Beder committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

   private:
    T value_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const T value_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
};

// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
 public:
  // This template type conversion operator allows DoDefault() to be
  // used in any function.
  template <typename F>
725
  operator Action<F>() const { return Action<F>(); }  // NOLINT
Jesse Beder's avatar
Jesse Beder committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
};

// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
 public:
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& /* args */) const {
    *ptr_ = value_;
  }

 private:
  T1* const ptr_;
  const T2 value_;

  GTEST_DISALLOW_ASSIGN_(AssignAction);
};

#if !GTEST_OS_WINDOWS_MOBILE

// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
 public:
  SetErrnoAndReturnAction(int errno_value, T result)
      : errno_(errno_value),
        result_(result) {}
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple& /* args */) const {
    errno = errno_;
    return result_;
  }

 private:
  const int errno_;
  const T result_;

  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
};

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Implements the SetArgumentPointee<N>(x) action for any function
773
774
775
776
777
778
779
780
// whose N-th argument (0-based) is a pointer to x's type.
template <size_t N, typename A, typename = void>
struct SetArgumentPointeeAction {
  A value;

  template <typename... Args>
  void operator()(const Args&... args) const {
    *::std::get<N>(std::tie(args...)) = value;
Jesse Beder's avatar
Jesse Beder committed
781
782
783
  }
};

784
785
786
787
788
789
790
791
792
793
// Implements the Invoke(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
struct InvokeMethodAction {
  Class* const obj_ptr;
  const MethodPtr method_ptr;

  template <typename... Args>
  auto operator()(Args&&... args) const
      -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
    return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
Jesse Beder's avatar
Jesse Beder committed
794
795
796
797
798
799
  }
};

// Implements the InvokeWithoutArgs(f) action.  The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
800
// Action<F> as long as f's type is compatible with F.
Jesse Beder's avatar
Jesse Beder committed
801
template <typename FunctionImpl>
802
803
struct InvokeWithoutArgsAction {
  FunctionImpl function_impl;
Jesse Beder's avatar
Jesse Beder committed
804
805
806

  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
  // compatible with f.
807
808
809
810
  template <typename... Args>
  auto operator()(const Args&...) -> decltype(function_impl()) {
    return function_impl();
  }
Jesse Beder's avatar
Jesse Beder committed
811
812
813
814
};

// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
815
816
817
struct InvokeMethodWithoutArgsAction {
  Class* const obj_ptr;
  const MethodPtr method_ptr;
Jesse Beder's avatar
Jesse Beder committed
818

819
  using ReturnType = typename std::result_of<MethodPtr(Class*)>::type;
Jesse Beder's avatar
Jesse Beder committed
820

821
822
823
824
  template <typename... Args>
  ReturnType operator()(const Args&...) const {
    return (obj_ptr->*method_ptr)();
  }
Jesse Beder's avatar
Jesse Beder committed
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
};

// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
 public:
  explicit IgnoreResultAction(const A& action) : action_(action) {}

  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename internal::Function<F>::Result Result;

    // Asserts at compile time that F returns void.
846
    static_assert(std::is_void<Result>::value, "Result type should be void.");
Jesse Beder's avatar
Jesse Beder committed
847
848
849
850
851
852
853
854
855
856
857
858
859

    return Action<F>(new Impl<F>(action_));
  }

 private:
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const A& action) : action_(action) {}

860
    void Perform(const ArgumentTuple& args) override {
Jesse Beder's avatar
Jesse Beder committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
      // Performs the action and ignores its result.
      action_.Perform(args);
    }

   private:
    // Type OriginalFunction is the same as F except that its return
    // type is IgnoredValue.
    typedef typename internal::Function<F>::MakeResultIgnoredValue
        OriginalFunction;

    const Action<OriginalFunction> action_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const A action_;

  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
};

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
template <typename InnerAction, size_t... I>
struct WithArgsAction {
  InnerAction action;

  // The inner action could be anything convertible to Action<X>.
  // We use the conversion operator to detect the signature of the inner Action.
  template <typename R, typename... Args>
  operator Action<R(Args...)>() const {  // NOLINT
    Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)>
        converted(action);

    return [converted](Args... args) -> R {
      return converted.Perform(std::forward_as_tuple(
        std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
    };
  }
Jesse Beder's avatar
Jesse Beder committed
897
898
};

899
900
901
902
903
904
905
template <typename... Actions>
struct DoAllAction {
 private:
  template <typename... Args, size_t... I>
  std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const {
    return {std::get<I>(actions)...};
  }
Jesse Beder's avatar
Jesse Beder committed
906
907

 public:
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
  std::tuple<Actions...> actions;

  template <typename R, typename... Args>
  operator Action<R(Args...)>() const {  // NOLINT
    struct Op {
      std::vector<Action<void(Args...)>> converted;
      Action<R(Args...)> last;
      R operator()(Args... args) const {
        auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
        for (auto& a : converted) {
          a.Perform(tuple_args);
        }
        return last.Perform(tuple_args);
      }
    };
    return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()),
              std::get<sizeof...(Actions) - 1>(actions)};
Jesse Beder's avatar
Jesse Beder committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
  }
};

}  // namespace internal

// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments.  For example, given
//
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   double DistanceToOriginWithIndex(int index, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
946
//   EXPECT_CALL(mock, Foo("abc", _, _))
Jesse Beder's avatar
Jesse Beder committed
947
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
948
//   EXPECT_CALL(mock, Bar(5, _, _))
Jesse Beder's avatar
Jesse Beder committed
949
950
951
952
953
954
955
956
957
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
//   // We can declare any uninteresting argument as Unused.
//   double DistanceToOrigin(Unused, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
958
959
//   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
//   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
Jesse Beder's avatar
Jesse Beder committed
960
961
typedef internal::IgnoredValue Unused;

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
// Creates an action that does actions a1, a2, ..., sequentially in
// each invocation.
template <typename... Action>
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
    Action&&... action) {
  return {std::forward_as_tuple(std::forward<Action>(action)...)};
}

// WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs
// it.  It adapts an action accepting one argument to one that accepts
// multiple arguments.  For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <size_t k, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
WithArg(InnerAction&& action) {
  return {std::forward<InnerAction>(action)};
}

// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and
// performs it.  It serves as an adaptor between actions with
// different argument lists.
template <size_t k, size_t... ks, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
WithArgs(InnerAction&& action) {
  return {std::forward<InnerAction>(action)};
}

// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument.  In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type>
WithoutArgs(InnerAction&& action) {
  return {std::forward<InnerAction>(action)};
}
Jesse Beder's avatar
Jesse Beder committed
1000
1001
1002
1003
1004
1005

// Creates an action that returns 'value'.  'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
1006
  return internal::ReturnAction<R>(std::move(value));
Jesse Beder's avatar
Jesse Beder committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
}

// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
  return MakePolymorphicAction(internal::ReturnNullAction());
}

// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
  return MakePolymorphicAction(internal::ReturnVoidAction());
}

// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
  return internal::ReturnRefAction<R>(x);
}

// Creates an action that returns the reference to a copy of the
// argument.  The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
  return internal::ReturnRefOfCopyAction<R>(x);
}

1033
1034
1035
1036
1037
1038
// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
// invariant.
template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) {
1039
  return internal::ByMoveWrapper<R>(std::move(x));
1040
1041
}

Jesse Beder's avatar
Jesse Beder committed
1042
1043
1044
1045
1046
1047
1048
1049
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
  return internal::DoDefaultAction();
}

// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
1050
1051
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T x) {
  return {std::move(x)};
Jesse Beder's avatar
Jesse Beder committed
1052
1053
1054
1055
}

// The following version is DEPRECATED.
template <size_t N, typename T>
1056
1057
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T x) {
  return {std::move(x)};
Jesse Beder's avatar
Jesse Beder committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
}

// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}

#if !GTEST_OS_WINDOWS_MOBILE

// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
  return MakePolymorphicAction(
      internal::SetErrnoAndReturnAction<T>(errval, result));
}

#endif  // !GTEST_OS_WINDOWS_MOBILE

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
// Various overloads for Invoke().

// Legacy function.
// Actions can now be implicitly constructed from callables. No need to create
// wrapper objects.
// This function exists for backwards compatibility.
template <typename FunctionImpl>
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
  return std::forward<FunctionImpl>(function_impl);
}

// Creates an action that invokes the given method on the given object
// with the mock function's arguments.
template <class Class, typename MethodPtr>
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
                                                      MethodPtr method_ptr) {
  return {obj_ptr, method_ptr};
}
Jesse Beder's avatar
Jesse Beder committed
1096
1097
1098

// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
1099
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
Jesse Beder's avatar
Jesse Beder committed
1100
InvokeWithoutArgs(FunctionImpl function_impl) {
1101
  return {std::move(function_impl)};
Jesse Beder's avatar
Jesse Beder committed
1102
1103
1104
1105
1106
}

// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
1107
1108
1109
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
    Class* obj_ptr, MethodPtr method_ptr) {
  return {obj_ptr, method_ptr};
Jesse Beder's avatar
Jesse Beder committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
}

// Creates an action that performs an_action and throws away its
// result.  In other words, it changes the return type of an_action to
// void.  an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
  return internal::IgnoreResultAction<A>(an_action);
}

// Creates a reference wrapper for the given L-value.  If necessary,
// you can explicitly specify the type of the reference.  For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&.  If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
//   ByRef<const Base>(derived)
1127
1128
1129
//
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
// However, it may still be used for consistency with ByMove().
Jesse Beder's avatar
Jesse Beder committed
1130
template <typename T>
1131
1132
inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
  return ::std::reference_wrapper<T>(l_value);
Jesse Beder's avatar
Jesse Beder committed
1133
1134
1135
1136
}

}  // namespace testing

1137
1138
1139
1140
1141
#ifdef _MSC_VER
# pragma warning(pop)
#endif


Jesse Beder's avatar
Jesse Beder committed
1142
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_