DbNet.cpp 6.07 KB
Newer Older
benjaminwan's avatar
benjaminwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include "DbNet.h"
#include "OcrUtils.h"

DbNet::DbNet() {}

DbNet::~DbNet() {
    delete session;
    for (auto name : inputNames) {
        free(name);
    }
    for (auto name : outputNames) {
        free(name);
    }
}

void DbNet::setNumThread(int numOfThread) {
    numThread = numOfThread;
    //===session options===
    // Sets the number of threads used to parallelize the execution within nodes
    // A value of 0 means ORT will pick a default
    //sessionOptions.SetIntraOpNumThreads(numThread);
    //set OMP_NUM_THREADS=16

    // Sets the number of threads used to parallelize the execution of the graph (across nodes)
    // If sequential execution is enabled this value is ignored
    // A value of 0 means ORT will pick a default
    sessionOptions.SetInterOpNumThreads(numThread);

    // Sets graph optimization level
    // ORT_DISABLE_ALL -> To disable all optimizations
    // ORT_ENABLE_BASIC -> To enable basic optimizations (Such as redundant node removals)
    // ORT_ENABLE_EXTENDED -> To enable extended optimizations (Includes level 1 + more complex optimizations like node fusions)
    // ORT_ENABLE_ALL -> To Enable All possible opitmizations
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
}

void DbNet::initModel(const std::string &pathStr) {
#ifdef _WIN32
    std::wstring detPath = strToWstr(pathStr);
    session = new Ort::Session(env, detPath.c_str(), sessionOptions);
#else
    session = new Ort::Session(env, pathStr.c_str(), sessionOptions);
#endif
    inputNames = getInputNames(session);
    outputNames = getOutputNames(session);
}

std::vector<TextBox> findRsBoxes(const cv::Mat &predMat, const cv::Mat &dilateMat, ScaleParam &s,
                                 const float boxScoreThresh, const float unClipRatio) {
    const int longSideThresh = 3;//minBox 长边门限
    const int maxCandidates = 1000;

    std::vector<std::vector<cv::Point>> contours;
    std::vector<cv::Vec4i> hierarchy;

    cv::findContours(dilateMat, contours, hierarchy, cv::RETR_LIST,
                     cv::CHAIN_APPROX_SIMPLE);

    int numContours = contours.size() >= maxCandidates ? maxCandidates : contours.size();

    std::vector<TextBox> rsBoxes;

    for (int i = 0; i < numContours; i++) {
        if (contours[i].size() <= 2) {
            continue;
        }
        cv::RotatedRect minAreaRect = cv::minAreaRect(contours[i]);

        float longSide;
        std::vector<cv::Point2f> minBoxes = getMinBoxes(minAreaRect, longSide);

        if (longSide < longSideThresh) {
            continue;
        }

        float boxScore = boxScoreFast(minBoxes, predMat);
        if (boxScore < boxScoreThresh)
            continue;

        //-----unClip-----
        cv::RotatedRect clipRect = unClip(minBoxes, unClipRatio);
        if (clipRect.size.height < 1.001 && clipRect.size.width < 1.001) {
            continue;
        }
        //-----unClip-----

        std::vector<cv::Point2f> clipMinBoxes = getMinBoxes(clipRect, longSide);
        if (longSide < longSideThresh + 2)
            continue;

        std::vector<cv::Point> intClipMinBoxes;

        for (int p = 0; p < clipMinBoxes.size(); p++) {
            float x = clipMinBoxes[p].x / s.ratioWidth;
            float y = clipMinBoxes[p].y / s.ratioHeight;
            int ptX = (std::min)((std::max)(int(x), 0), s.srcWidth - 1);
            int ptY = (std::min)((std::max)(int(y), 0), s.srcHeight - 1);
            cv::Point point{ptX, ptY};
            intClipMinBoxes.push_back(point);
        }
        rsBoxes.push_back(TextBox{intClipMinBoxes, boxScore});
    }
    reverse(rsBoxes.begin(), rsBoxes.end());
    return rsBoxes;
}

std::vector<TextBox>
DbNet::getTextBoxes(cv::Mat &src, ScaleParam &s, float boxScoreThresh, float boxThresh, float unClipRatio) {
    cv::Mat srcResize;
    resize(src, srcResize, cv::Size(s.dstWidth, s.dstHeight));
    std::vector<float> inputTensorValues = substractMeanNormalize(srcResize, meanValues, normValues);
    std::array<int64_t, 4> inputShape{1, srcResize.channels(), srcResize.rows, srcResize.cols};
    auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
    Ort::Value inputTensor = Ort::Value::CreateTensor<float>(memoryInfo, inputTensorValues.data(),
                                                             inputTensorValues.size(), inputShape.data(),
                                                             inputShape.size());
    assert(inputTensor.IsTensor());
    auto outputTensor = session->Run(Ort::RunOptions{nullptr}, inputNames.data(), &inputTensor,
                                     inputNames.size(), outputNames.data(), outputNames.size());
    assert(outputTensor.size() == 1 && outputTensor.front().IsTensor());
    std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();
    int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1,
                                          std::multiplies<int64_t>());
    float *floatArray = outputTensor.front().GetTensorMutableData<float>();
    std::vector<float> outputData(floatArray, floatArray + outputCount);

    //-----Data preparation-----
    int outHeight = outputShape[2];
    int outWidth = outputShape[3];
    int area = outHeight * outWidth;

    std::vector<float> predData(area, 0.0);
    std::vector<unsigned char> cbufData(area, ' ');

    for (int i = 0; i < area; i++) {
        predData[i] = float(outputData[i]);
        cbufData[i] = (unsigned char) ((outputData[i]) * 255);
    }

    cv::Mat predMat(outHeight, outWidth, CV_32F, (float *) predData.data());
    cv::Mat cBufMat(outHeight, outWidth, CV_8UC1, (unsigned char *) cbufData.data());

    //-----boxThresh-----
    const double maxValue = 255;
    const double threshold = boxThresh * 255;
    cv::Mat thresholdMat;
    cv::threshold(cBufMat, thresholdMat, threshold, maxValue, cv::THRESH_BINARY);

    //-----dilate-----
    cv::Mat dilateMat;
    cv::Mat dilateElement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
    cv::dilate(thresholdMat, dilateMat, dilateElement);

    return findRsBoxes(predMat, dilateMat, s, boxScoreThresh, unClipRatio);
}