AngleNet.cpp 5.06 KB
Newer Older
benjaminwan's avatar
benjaminwan committed
1
2
3
4
5
6
7
8
#include "AngleNet.h"
#include "OcrUtils.h"
#include <numeric>

AngleNet::AngleNet() {}

AngleNet::~AngleNet() {
    delete session;
9
10
11
12
13
14
15
    for (auto name : inputNames) {
#ifdef _WIN32
        _aligned_free(name);
#else
        free(name);
#endif
    }
16
    inputNames.clear();
17
18
19
20
21
22
23
    for (auto name : outputNames) {
#ifdef _WIN32
        _aligned_free(name);
#else
        free(name);
#endif
    }
24
    outputNames.clear();
benjaminwan's avatar
benjaminwan committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
}

void AngleNet::setNumThread(int numOfThread) {
    numThread = numOfThread;
    //===session options===
    // Sets the number of threads used to parallelize the execution within nodes
    // A value of 0 means ORT will pick a default
    //sessionOptions.SetIntraOpNumThreads(numThread);
    //set OMP_NUM_THREADS=16

    // Sets the number of threads used to parallelize the execution of the graph (across nodes)
    // If sequential execution is enabled this value is ignored
    // A value of 0 means ORT will pick a default
    sessionOptions.SetInterOpNumThreads(numThread);

    // Sets graph optimization level
    // ORT_DISABLE_ALL -> To disable all optimizations
    // ORT_ENABLE_BASIC -> To enable basic optimizations (Such as redundant node removals)
    // ORT_ENABLE_EXTENDED -> To enable extended optimizations (Includes level 1 + more complex optimizations like node fusions)
    // ORT_ENABLE_ALL -> To Enable All possible opitmizations
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
}

void AngleNet::initModel(const std::string &pathStr) {
#ifdef _WIN32
    std::wstring clsPath = strToWstr(pathStr);
    session = new Ort::Session(env, clsPath.c_str(), sessionOptions);
#else
    session = new Ort::Session(env, pathStr.c_str(), sessionOptions);
#endif
    inputNames = getInputNames(session);
    outputNames = getOutputNames(session);
}

Angle scoreToAngle(const std::vector<float> &outputData) {
    int maxIndex = 0;
    float maxScore = 0;
    for (int i = 0; i < outputData.size(); i++) {
        if (outputData[i] > maxScore) {
            maxScore = outputData[i];
            maxIndex = i;
        }
    }
    return {maxIndex, maxScore};
}

Angle AngleNet::getAngle(cv::Mat &src) {

    std::vector<float> inputTensorValues = substractMeanNormalize(src, meanValues, normValues);

    std::array<int64_t, 4> inputShape{1, src.channels(), src.rows, src.cols};

    auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);

    Ort::Value inputTensor = Ort::Value::CreateTensor<float>(memoryInfo, inputTensorValues.data(),
                                                             inputTensorValues.size(), inputShape.data(),
                                                             inputShape.size());
    assert(inputTensor.IsTensor());

    auto outputTensor = session->Run(Ort::RunOptions{nullptr}, inputNames.data(), &inputTensor,
                                     inputNames.size(), outputNames.data(), outputNames.size());

    assert(outputTensor.size() == 1 && outputTensor.front().IsTensor());

    std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();

    int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1,
                                          std::multiplies<int64_t>());

    float *floatArray = outputTensor.front().GetTensorMutableData<float>();
    std::vector<float> outputData(floatArray, floatArray + outputCount);
    return scoreToAngle(outputData);
}

std::vector<Angle> AngleNet::getAngles(std::vector<cv::Mat> &partImgs, const char *path,
                                       const char *imgName, bool doAngle, bool mostAngle) {
    int size = partImgs.size();
    std::vector<Angle> angles(size);
    if (doAngle) {
        for (int i = 0; i < size; ++i) {
            double startAngle = getCurrentTime();
            cv::Mat angleImg;
            cv::resize(partImgs[i], angleImg, cv::Size(dstWidth, dstHeight));
            Angle angle = getAngle(angleImg);
            double endAngle = getCurrentTime();
            angle.time = endAngle - startAngle;

            angles[i] = angle;

            //OutPut AngleImg
            if (isOutputAngleImg) {
                std::string angleImgFile = getDebugImgFilePath(path, imgName, i, "-angle-");
                saveImg(angleImg, angleImgFile.c_str());
            }
        }
    } else {
        for (int i = 0; i < size; ++i) {
            angles[i] = Angle{-1, 0.f};
        }
    }
    //Most Possible AngleIndex
    if (doAngle && mostAngle) {
        auto angleIndexes = getAngleIndexes(angles);
        double sum = std::accumulate(angleIndexes.begin(), angleIndexes.end(), 0.0);
        double halfPercent = angles.size() / 2.0f;
        int mostAngleIndex;
        if (sum < halfPercent) {//all angle set to 0
            mostAngleIndex = 0;
        } else {//all angle set to 1
            mostAngleIndex = 1;
        }
        //printf("Set All Angle to mostAngleIndex(%d)\n", mostAngleIndex);
        for (int i = 0; i < angles.size(); ++i) {
            Angle angle = angles[i];
            angle.index = mostAngleIndex;
            angles.at(i) = angle;
        }
    }

    return angles;
}