paraformer_onnx.cpp 4.63 KB
Newer Older
mayong's avatar
mayong committed
1
2
3
4
5
#include "precomp.h"

using namespace std;
using namespace paraformer;

mayong's avatar
mayong committed
6
ModelImp::ModelImp(const char* path,int nNumThread)
mayong's avatar
mayong committed
7
8
9
10
{
    string model_path = pathAppend(path, "model.onnx");
    string vocab_path = pathAppend(path, "vocab.txt");

mayong's avatar
mayong committed
11
    fe = new FeatureExtract(3);
mayong's avatar
mayong committed
12

mayong's avatar
mayong committed
13
    sessionOptions.SetInterOpNumThreads(nNumThread);
mayong's avatar
mayong committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);

#ifdef _WIN32
    wstring wstrPath = strToWstr(model_path);
    m_session = new Ort::Session(env, wstrPath.c_str(), sessionOptions);
#else
    m_session = new Ort::Session(env, model_path.c_str(), sessionOptions);
#endif

    string strName;
    getInputName(m_session, strName);
    m_strInputNames.push_back(strName.c_str());
    getInputName(m_session, strName,1);
    m_strInputNames.push_back(strName);
    
    getOutputName(m_session, strName);
    m_strOutputNames.push_back(strName);
    getOutputName(m_session, strName,1);
    m_strOutputNames.push_back(strName);

    for (auto& item : m_strInputNames)
        m_szInputNames.push_back(item.c_str());
    for (auto& item : m_strOutputNames)
        m_szOutputNames.push_back(item.c_str());
    vocab = new Vocab(vocab_path.c_str());
}

ModelImp::~ModelImp()
{
mayong's avatar
mayong committed
43
44
    if(fe)
        delete fe;
mayong's avatar
mayong committed
45
46
47
48
49
    if (m_session)
    {
        delete m_session;
        m_session = nullptr;
    }
mayong's avatar
mayong committed
50
51
    if(vocab)
        delete vocab;
mayong's avatar
mayong committed
52
53
54
55
56
57
58
59
60
61
62
63
64
}

void ModelImp::reset()
{
    fe->reset();
}

void ModelImp::apply_lfr(Tensor<float>*& din)
{
    int mm = din->size[2];
    int ll = ceil(mm / 6.0);
    Tensor<float>* tmp = new Tensor<float>(ll, 560);
    int out_offset = 0;
mayong's avatar
mayong committed
65
66
    for (int i = 0; i < ll; i++) {
        for (int j = 0; j < 7; j++) {
mayong's avatar
mayong committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
            int idx = i * 6 + j - 3;
            if (idx < 0) {
                idx = 0;
            }
            if (idx >= mm) {
                idx = mm - 1;
            }
            memcpy(tmp->buff + out_offset, din->buff + idx * 80,
                sizeof(float) * 80);
            out_offset += 80;
        }
    }
    delete din;
    din = tmp;
}

void ModelImp::apply_cmvn(Tensor<float>* din)
{
    const float* var;
    const float* mean;
    float scale = 22.6274169979695;
    int m = din->size[2];
    int n = din->size[3];

    var = (const float*)paraformer_cmvn_var_hex;
    mean = (const float*)paraformer_cmvn_mean_hex;
mayong's avatar
mayong committed
93
94
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
mayong's avatar
mayong committed
95
96
97
98
99
100
101
102
103
104
            int idx = i * n + j;
            din->buff[idx] = (din->buff[idx] + mean[j]) * var[j];
        }
    }
}

string ModelImp::greedy_search(float * in, int nLen )
{
    vector<int> hyps;
    int Tmax = nLen;
mayong's avatar
mayong committed
105
    for (int i = 0; i < Tmax; i++) {
mayong's avatar
mayong committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        int max_idx;
        float max_val;
        findmax(in + i * 8404, 8404, max_val, max_idx);
        hyps.push_back(max_idx);
    }

    return vocab->vector2stringV2(hyps);
}

string ModelImp::forward(float* din, int len, int flag)
{

    Tensor<float>* in;
    fe->insert(din, len, flag);
    fe->fetch(in);
    apply_lfr(in);
    apply_cmvn(in);
    Ort::RunOptions run_option;

    std::array<int64_t, 3> input_shape_{ in->size[0],in->size[2],in->size[3] };
    Ort::Value onnx_feats = Ort::Value::CreateTensor<float>(m_memoryInfo,
        in->buff,
        in->buff_size,
        input_shape_.data(),
        input_shape_.size());

    std::vector<int32_t> feats_len{ in->size[2] };
    std::vector<int64_t> feats_len_dim{ 1 };
    Ort::Value onnx_feats_len = Ort::Value::CreateTensor(
        m_memoryInfo,
        feats_len.data(),
        feats_len.size() * sizeof(int32_t),
        feats_len_dim.data(),
        feats_len_dim.size(), ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32);
    std::vector<Ort::Value> input_onnx;
    input_onnx.emplace_back(std::move(onnx_feats));
    input_onnx.emplace_back(std::move(onnx_feats_len));

mayong's avatar
mayong committed
144
145
    string result;
    try {
mayong's avatar
mayong committed
146

mayong's avatar
mayong committed
147
148
        auto outputTensor = m_session->Run(run_option, m_szInputNames.data(), input_onnx.data(), m_szInputNames.size(), m_szOutputNames.data(), m_szOutputNames.size());
        std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();
mayong's avatar
mayong committed
149
150


mayong's avatar
mayong committed
151
152
153
        int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1, std::multiplies<int64_t>());
        float* floatData = outputTensor[0].GetTensorMutableData<float>();
        auto encoder_out_lens = outputTensor[1].GetTensorMutableData<int64_t>();
mayong's avatar
mayong committed
154

mayong's avatar
mayong committed
155
156
157
158
159
160
        result = greedy_search(floatData, *encoder_out_lens);
    }
    catch (...)
    {
        result = "";
    }
mayong's avatar
mayong committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180


    if(in)
        delete in;

    return result;
}

string ModelImp::forward_chunk(float* din, int len, int flag)
{

    printf("Not Imp!!!!!!\n");
    return "Hello";
}

string ModelImp::rescoring()
{
    printf("Not Imp!!!!!!\n");
    return "Hello";
}