transformation.py 6.67 KB
Newer Older
SWHL's avatar
SWHL committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Transformation module."""
import copy
import io
import logging
from collections import OrderedDict
from collections.abc import Sequence
from inspect import signature

import yaml

from ..utils.dynamic_import import dynamic_import

import_alias = dict(
    identity="paddlespeech.s2t.transform.transform_interface:Identity",
    time_warp="paddlespeech.s2t.transform.spec_augment:TimeWarp",
    time_mask="paddlespeech.s2t.transform.spec_augment:TimeMask",
    freq_mask="paddlespeech.s2t.transform.spec_augment:FreqMask",
    spec_augment="paddlespeech.s2t.transform.spec_augment:SpecAugment",
    speed_perturbation="paddlespeech.s2t.transform.perturb:SpeedPerturbation",
    speed_perturbation_sox="paddlespeech.s2t.transform.perturb:SpeedPerturbationSox",
    volume_perturbation="paddlespeech.s2t.transform.perturb:VolumePerturbation",
    noise_injection="paddlespeech.s2t.transform.perturb:NoiseInjection",
    bandpass_perturbation="paddlespeech.s2t.transform.perturb:BandpassPerturbation",
    rir_convolve="paddlespeech.s2t.transform.perturb:RIRConvolve",
    delta="paddlespeech.s2t.transform.add_deltas:AddDeltas",
    cmvn="paddlespeech.s2t.transform.cmvn:CMVN",
    utterance_cmvn="paddlespeech.s2t.transform.cmvn:UtteranceCMVN",
    fbank="paddlespeech.s2t.transform.spectrogram:LogMelSpectrogram",
    spectrogram="paddlespeech.s2t.transform.spectrogram:Spectrogram",
    stft="paddlespeech.s2t.transform.spectrogram:Stft",
    istft="paddlespeech.s2t.transform.spectrogram:IStft",
    stft2fbank="paddlespeech.s2t.transform.spectrogram:Stft2LogMelSpectrogram",
    wpe="paddlespeech.s2t.transform.wpe:WPE",
    channel_selector="paddlespeech.s2t.transform.channel_selector:ChannelSelector",
    fbank_kaldi="paddlespeech.s2t.transform.spectrogram:LogMelSpectrogramKaldi",
    cmvn_json="paddlespeech.s2t.transform.cmvn:GlobalCMVN")


class Transformation():
    """Apply some functions to the mini-batch

    Examples:
        >>> kwargs = {"process": [{"type": "fbank",
        ...                        "n_mels": 80,
        ...                        "fs": 16000},
        ...                       {"type": "cmvn",
        ...                        "stats": "data/train/cmvn.ark",
        ...                        "norm_vars": True},
        ...                       {"type": "delta", "window": 2, "order": 2}]}
        >>> transform = Transformation(kwargs)
        >>> bs = 10
        >>> xs = [np.random.randn(100, 80).astype(np.float32)
        ...       for _ in range(bs)]
        >>> xs = transform(xs)
    """

    def __init__(self, conffile=None):
        if conffile is not None:
            if isinstance(conffile, dict):
                self.conf = copy.deepcopy(conffile)
            else:
                with io.open(conffile, encoding="utf-8") as f:
                    self.conf = yaml.safe_load(f)
                    assert isinstance(self.conf, dict), type(self.conf)
        else:
            self.conf = {"mode": "sequential", "process": []}

        self.functions = OrderedDict()
        if self.conf.get("mode", "sequential") == "sequential":
            for idx, process in enumerate(self.conf["process"]):
                assert isinstance(process, dict), type(process)
                opts = dict(process)
                process_type = opts.pop("type")
                class_obj = dynamic_import(process_type, import_alias)
                # TODO(karita): assert issubclass(class_obj,
                # TransformInterface)
                try:
                    self.functions[idx] = class_obj(**opts)
                except TypeError:
                    try:
                        signa = signature(class_obj)
                    except ValueError:
                        # Some function, e.g. built-in function, are failed
                        pass
                    else:
                        logging.error("Expected signature: {}({})".format(
                            class_obj.__name__, signa))
                    raise
        else:
            raise NotImplementedError(
                "Not supporting mode={}".format(self.conf["mode"]))

    def __repr__(self):
        rep = "\n" + "\n".join("    {}: {}".format(k, v)
                               for k, v in self.functions.items())
        return "{}({})".format(self.__class__.__name__, rep)

    def __call__(self, xs, uttid_list=None, **kwargs):
        """Return new mini-batch

        :param Union[Sequence[np.ndarray], np.ndarray] xs:
        :param Union[Sequence[str], str] uttid_list:
        :return: batch:
        :rtype: List[np.ndarray]
        """
        if not isinstance(xs, Sequence):
            is_batch = False
            xs = [xs]
        else:
            is_batch = True

        if isinstance(uttid_list, str):
            uttid_list = [uttid_list for _ in range(len(xs))]

        if self.conf.get("mode", "sequential") == "sequential":
            for idx in range(len(self.conf["process"])):
                func = self.functions[idx]
                # TODO(karita): use TrainingTrans and UttTrans to check __call__ args
                # Derive only the args which the func has
                try:
                    param = signature(func).parameters
                except ValueError:
                    # Some function, e.g. built-in function, are failed
                    param = {}
                _kwargs = {k: v for k, v in kwargs.items() if k in param}
                try:
                    if uttid_list is not None and "uttid" in param:
                        xs = [
                            func(x, u, **_kwargs)
                            for x, u in zip(xs, uttid_list)
                        ]
                    else:
                        xs = [func(x, **_kwargs) for x in xs]
                except Exception:
                    logging.fatal("Catch a exception from {}th func: {}".format(
                        idx, func))
                    raise
        else:
            raise NotImplementedError(
                "Not supporting mode={}".format(self.conf["mode"]))

        if is_batch:
            return xs
        else:
            return xs[0]