utils.py 12.3 KB
Newer Older
SWHL's avatar
SWHL committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- encoding: utf-8 -*-
# @Author: SWHL
# @Contact: liekkaskono@163.com
import logging
import pickle
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union

import numpy as np
import yaml
from onnxruntime import (GraphOptimizationLevel, InferenceSession,
                         SessionOptions, get_available_providers, get_device)
from typeguard import check_argument_types

from .kaldifeat import compute_fbank_feats

root_dir = Path(__file__).resolve().parent


class TokenIDConverter():
    def __init__(self, token_path: Union[Path, str],
                 unk_symbol: str = "<unk>",):
        check_argument_types()

        self.token_list = self.load_token(root_dir / token_path)
        self.unk_symbol = unk_symbol

    @staticmethod
    def load_token(file_path: Union[Path, str]) -> List:
        if not Path(file_path).exists():
            raise TokenIDConverterError(f'The {file_path} does not exist.')

        with open(str(file_path), 'rb') as f:
            token_list = pickle.load(f)

        if len(token_list) != len(set(token_list)):
            raise TokenIDConverterError('The Token exists duplicated symbol.')
        return token_list

    def get_num_vocabulary_size(self) -> int:
        return len(self.token_list)

    def ids2tokens(self,
                   integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
        if isinstance(integers, np.ndarray) and integers.ndim != 1:
            raise TokenIDConverterError(
                f"Must be 1 dim ndarray, but got {integers.ndim}")
        return [self.token_list[i] for i in integers]

    def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
        token2id = {v: i for i, v in enumerate(self.token_list)}
        if self.unk_symbol not in token2id:
            raise TokenIDConverterError(
                f"Unknown symbol '{self.unk_symbol}' doesn't exist in the token_list"
            )
        unk_id = token2id[self.unk_symbol]
        return [token2id.get(i, unk_id) for i in tokens]


class CharTokenizer():
    def __init__(
        self,
        symbol_value: Union[Path, str, Iterable[str]] = None,
        space_symbol: str = "<space>",
        remove_non_linguistic_symbols: bool = False,
    ):
        check_argument_types()

        self.space_symbol = space_symbol
        self.non_linguistic_symbols = self.load_symbols(symbol_value)
        self.remove_non_linguistic_symbols = remove_non_linguistic_symbols

    @staticmethod
    def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
        if value is None:
            return set()

        if isinstance(value, Iterable[str]):
            return set(value)

        file_path = Path(value)
        if not file_path.exists():
            logging.warning("%s doesn't exist.", file_path)
            return set()

        with file_path.open("r", encoding="utf-8") as f:
            return set(line.rstrip() for line in f)

    def text2tokens(self, line: Union[str, list]) -> List[str]:
        tokens = []
        while len(line) != 0:
            for w in self.non_linguistic_symbols:
                if line.startswith(w):
                    if not self.remove_non_linguistic_symbols:
                        tokens.append(line[: len(w)])
                    line = line[len(w):]
                    break
            else:
                t = line[0]
                if t == " ":
                    t = "<space>"
                tokens.append(t)
                line = line[1:]
        return tokens

    def tokens2text(self, tokens: Iterable[str]) -> str:
        tokens = [t if t != self.space_symbol else " " for t in tokens]
        return "".join(tokens)

    def __repr__(self):
        return (
            f"{self.__class__.__name__}("
            f'space_symbol="{self.space_symbol}"'
            f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
            f")"
        )


class WavFrontend():
    """Conventional frontend structure for ASR.
    """

    def __init__(
            self,
            cmvn_file: str = None,
            fs: int = 16000,
            window: str = 'hamming',
            n_mels: int = 80,
            frame_length: int = 25,
            frame_shift: int = 10,
            filter_length_min: int = -1,
            filter_length_max: float = -1,
            lfr_m: int = 1,
            lfr_n: int = 1,
            dither: float = 1.0
    ) -> None:
        check_argument_types()

        self.fs = fs
        self.window = window
        self.n_mels = n_mels
        self.frame_length = frame_length
        self.frame_shift = frame_shift
        self.filter_length_min = filter_length_min
        self.filter_length_max = filter_length_max
        self.lfr_m = lfr_m
        self.lfr_n = lfr_n
        self.cmvn_file = root_dir / cmvn_file
        self.dither = dither

    def forward_fbank(self,
                      input_content: np.ndarray,
                      ) -> Tuple[np.ndarray, np.ndarray]:
        feats, feats_lens = [], []
        batch_size = input_content.shape[0]
        input_lengths = np.array([input_content.shape[1]])
        for i in range(batch_size):
            waveform_length = input_lengths[i]
            waveform = input_content[i][:waveform_length]
            waveform = waveform * (1 << 15)
            mat = compute_fbank_feats(waveform,
                                      num_mel_bins=self.n_mels,
                                      frame_length=self.frame_length,
                                      frame_shift=self.frame_shift,
                                      dither=self.dither,
                                      energy_floor=0.0,
                                      sample_frequency=self.fs)
            feats.append(mat)
            feats_lens.append(mat.shape[0])

        feats_pad = np.array(feats).astype(np.float32)
        feats_lens = np.array(feats_lens).astype(np.int64)
        return feats_pad, feats_lens

    def forward_lfr_cmvn(self,
                         input_content: np.ndarray,
                         ) -> Tuple[np.ndarray, np.ndarray]:
        feats, feats_lens = [], []
        batch_size = input_content.shape[0]

        if self.cmvn_file:
            cmvn = self.load_cmvn()

        input_lengths = np.array([input_content.shape[1]])
        for i in range(batch_size):
            mat = input_content[i, :input_lengths[i], :]

            if self.lfr_m != 1 or self.lfr_n != 1:
                mat = self.apply_lfr(mat, self.lfr_m, self.lfr_n)

            if self.cmvn_file:
                mat = self.apply_cmvn(mat, cmvn)

            feats.append(mat)
            feats_lens.append(mat.shape[0])

        feats_pad = np.array(feats).astype(np.float32)
SWHL's avatar
SWHL committed
198
        feats_lens = np.array(feats_lens).astype(np.int32)
SWHL's avatar
SWHL committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        return feats_pad, feats_lens

    @staticmethod
    def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
        LFR_inputs = []

        T = inputs.shape[0]
        T_lfr = int(np.ceil(T / lfr_n))
        left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
        inputs = np.vstack((left_padding, inputs))
        T = T + (lfr_m - 1) // 2
        for i in range(T_lfr):
            if lfr_m <= T - i * lfr_n:
                LFR_inputs.append(
                    (inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1))
            else:
                # process last LFR frame
                num_padding = lfr_m - (T - i * lfr_n)
SWHL's avatar
SWHL committed
217
                frame = inputs[i * lfr_n:].reshape(-1)
SWHL's avatar
SWHL committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                for _ in range(num_padding):
                    frame = np.hstack((frame, inputs[-1]))

                LFR_inputs.append(frame)
        LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
        return LFR_outputs

    def apply_cmvn(self, inputs: np.ndarray, cmvn: np.ndarray) -> np.ndarray:
        """
        Apply CMVN with mvn data
        """
        frame, dim = inputs.shape
        means = np.tile(cmvn[0:1, :dim], (frame, 1))
        vars = np.tile(cmvn[1:2, :dim], (frame, 1))
        inputs = (inputs + means) * vars
        return inputs

    def load_cmvn(self,) -> np.ndarray:
        with open(self.cmvn_file, 'r', encoding='utf-8') as f:
            lines = f.readlines()

        means_list = []
        vars_list = []
        for i in range(len(lines)):
            line_item = lines[i].split()
            if line_item[0] == '<AddShift>':
                line_item = lines[i + 1].split()
                if line_item[0] == '<LearnRateCoef>':
                    add_shift_line = line_item[3:(len(line_item) - 1)]
                    means_list = list(add_shift_line)
                    continue
            elif line_item[0] == '<Rescale>':
                line_item = lines[i + 1].split()
                if line_item[0] == '<LearnRateCoef>':
                    rescale_line = line_item[3:(len(line_item) - 1)]
                    vars_list = list(rescale_line)
                    continue

        means = np.array(means_list).astype(np.float64)
        vars = np.array(vars_list).astype(np.float64)
        cmvn = np.array([means, vars])
        return cmvn


class Hypothesis(NamedTuple):
    """Hypothesis data type."""

    yseq: np.ndarray
    score: Union[float, np.ndarray] = 0
    scores: Dict[str, Union[float, np.ndarray]] = dict()
    states: Dict[str, Any] = dict()

    def asdict(self) -> dict:
        """Convert data to JSON-friendly dict."""
        return self._replace(
            yseq=self.yseq.tolist(),
            score=float(self.score),
            scores={k: float(v) for k, v in self.scores.items()},
        )._asdict()


class TokenIDConverterError(Exception):
    pass


class OrtInferSession():
    def __init__(self, config):
        sess_opt = SessionOptions()
        sess_opt.log_severity_level = 4
        sess_opt.enable_cpu_mem_arena = False
        sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL

        cuda_ep = 'CUDAExecutionProvider'
        cpu_ep = 'CPUExecutionProvider'
        cpu_provider_options = {
            "arena_extend_strategy": "kSameAsRequested",
        }

        EP_list = []
        if config['use_cuda'] and get_device() == 'GPU' \
                and cuda_ep in get_available_providers():
            EP_list = [(cuda_ep, config[cuda_ep])]
        EP_list.append((cpu_ep, cpu_provider_options))

        config['model_path'] = str(root_dir / config['model_path'])
        self._verify_model(config['model_path'])
        self.session = InferenceSession(config['model_path'],
                                        sess_options=sess_opt,
                                        providers=EP_list)

        if config['use_cuda'] and cuda_ep not in self.session.get_providers():
            warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
                          'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
                          'you can check their relations from the offical web site: '
                          'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
                          RuntimeWarning)

    def __call__(self,
                 input_content: List[Union[np.ndarray, np.ndarray]]) -> np.ndarray:
        input_dict = dict(zip(self.get_input_names(), input_content))
        return self.session.run(None, input_dict)[0]

    def get_input_names(self, ):
        return [v.name for v in self.session.get_inputs()]

SWHL's avatar
SWHL committed
323
324
    def get_output_names(self,):
        return [v.name for v in self.session.get_outputs()]
SWHL's avatar
SWHL committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

    def get_character_list(self, key: str = 'character'):
        return self.meta_dict[key].splitlines()

    def have_key(self, key: str = 'character') -> bool:
        self.meta_dict = self.session.get_modelmeta().custom_metadata_map
        if key in self.meta_dict.keys():
            return True
        return False

    @staticmethod
    def _verify_model(model_path):
        model_path = Path(model_path)
        if not model_path.exists():
            raise FileNotFoundError(f'{model_path} does not exists.')
        if not model_path.is_file():
            raise FileExistsError(f'{model_path} is not a file.')


def read_yaml(yaml_path: Union[str, Path]) -> Dict:
    if not Path(yaml_path).exists():
        raise FileExistsError(f'The {yaml_path} does not exist.')

    with open(str(yaml_path), 'rb') as f:
        data = yaml.load(f, Loader=yaml.Loader)
    return data