float-weight.h 28 KB
Newer Older
SWHL's avatar
SWHL committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Float weight set and associated semiring operation definitions.

#ifndef FST_FLOAT_WEIGHT_H_
#define FST_FLOAT_WEIGHT_H_

#include <algorithm>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <sstream>
#include <string>
#include <type_traits>

#include <fst/util.h>
#include <fst/weight.h>


namespace fst {

// Numeric limits class.
template <class T>
class FloatLimits {
 public:
  static constexpr T PosInfinity() {
    return std::numeric_limits<T>::infinity();
  }

  static constexpr T NegInfinity() { return -PosInfinity(); }

  static constexpr T NumberBad() { return std::numeric_limits<T>::quiet_NaN(); }
};

// Weight class to be templated on floating-points types.
template <class T = float>
class FloatWeightTpl {
 public:
  using ValueType = T;

  FloatWeightTpl() noexcept {}

  constexpr FloatWeightTpl(T f) : value_(f) {}  // NOLINT

  // TODO(mjansche): Leave implicit once Android NDK r18 is the default.
  FloatWeightTpl(const FloatWeightTpl<T> &) = default;
  FloatWeightTpl(FloatWeightTpl<T> &&) noexcept = default;

  FloatWeightTpl<T> &operator=(const FloatWeightTpl<T> &) = default;
  FloatWeightTpl<T> &operator=(FloatWeightTpl<T> &&) noexcept = default;

  std::istream &Read(std::istream &strm) { return ReadType(strm, &value_); }

  std::ostream &Write(std::ostream &strm) const {
    return WriteType(strm, value_);
  }

  size_t Hash() const {
    size_t hash = 0;
    // Avoid using union, which would be undefined behavior.
    // Use memcpy, similar to bit_cast, but sizes may be different.
    // This should be optimized into a single move instruction by
    // any reasonable compiler.
    std::memcpy(&hash, &value_, std::min(sizeof(hash), sizeof(value_)));
    return hash;
  }

  constexpr const T &Value() const { return value_; }

 protected:
  void SetValue(const T &f) { value_ = f; }

  static constexpr const char *GetPrecisionString() {
    return sizeof(T) == 4 ? ""
        : sizeof(T) == 1 ? "8"
        : sizeof(T) == 2 ? "16"
        : sizeof(T) == 8 ? "64"
        : "unknown";
  }

 private:
  T value_;
};

// Single-precision float weight.
using FloatWeight = FloatWeightTpl<float>;

template <class T>
constexpr bool operator==(const FloatWeightTpl<T> &w1,
                          const FloatWeightTpl<T> &w2) {
#if (defined(__i386__) || defined(__x86_64__)) && !defined(__SSE2_MATH__)
// With i387 instructions, excess precision on a weight in an 80-bit
// register may cause it to compare unequal to that same weight when
// stored to memory.  This breaks =='s reflexivity, in turn breaking
// NaturalLess.
#error "Please compile with -msse -mfpmath=sse, or equivalent."
#endif
  return w1.Value() == w2.Value();
}

// These seemingly unnecessary overloads are actually needed to make
// comparisons like FloatWeightTpl<float> == float compile.  If only the
// templated version exists, the FloatWeightTpl<float>(float) conversion
// won't be found.
constexpr bool operator==(const FloatWeightTpl<float> &w1,
                          const FloatWeightTpl<float> &w2) {
  return operator==<float>(w1, w2);
}

constexpr bool operator==(const FloatWeightTpl<double> &w1,
                          const FloatWeightTpl<double> &w2) {
  return operator==<double>(w1, w2);
}

template <class T>
constexpr bool operator!=(const FloatWeightTpl<T> &w1,
                          const FloatWeightTpl<T> &w2) {
  return !(w1 == w2);
}

constexpr bool operator!=(const FloatWeightTpl<float> &w1,
                          const FloatWeightTpl<float> &w2) {
  return operator!=<float>(w1, w2);
}

constexpr bool operator!=(const FloatWeightTpl<double> &w1,
                          const FloatWeightTpl<double> &w2) {
  return operator!=<double>(w1, w2);
}

template <class T>
constexpr bool FloatApproxEqual(T w1, T w2, float delta = kDelta) {
  return w1 <= w2 + delta && w2 <= w1 + delta;
}

template <class T>
constexpr bool ApproxEqual(const FloatWeightTpl<T> &w1,
                           const FloatWeightTpl<T> &w2, float delta = kDelta) {
  return FloatApproxEqual(w1.Value(), w2.Value(), delta);
}

template <class T>
inline std::ostream &operator<<(std::ostream &strm,
                                const FloatWeightTpl<T> &w) {
  if (w.Value() == FloatLimits<T>::PosInfinity()) {
    return strm << "Infinity";
  } else if (w.Value() == FloatLimits<T>::NegInfinity()) {
    return strm << "-Infinity";
  } else if (w.Value() != w.Value()) {  // Fails for IEEE NaN.
    return strm << "BadNumber";
  } else {
    return strm << w.Value();
  }
}

template <class T>
inline std::istream &operator>>(std::istream &strm, FloatWeightTpl<T> &w) {
  string s;
  strm >> s;
  if (s == "Infinity") {
    w = FloatWeightTpl<T>(FloatLimits<T>::PosInfinity());
  } else if (s == "-Infinity") {
    w = FloatWeightTpl<T>(FloatLimits<T>::NegInfinity());
  } else {
    char *p;
    T f = strtod(s.c_str(), &p);
    if (p < s.c_str() + s.size()) {
      strm.clear(std::ios::badbit);
    } else {
      w = FloatWeightTpl<T>(f);
    }
  }
  return strm;
}

// Tropical semiring: (min, +, inf, 0).
template <class T>
class TropicalWeightTpl : public FloatWeightTpl<T> {
 public:
  using typename FloatWeightTpl<T>::ValueType;
  using FloatWeightTpl<T>::Value;
  using ReverseWeight = TropicalWeightTpl<T>;
  using Limits = FloatLimits<T>;

  TropicalWeightTpl() noexcept : FloatWeightTpl<T>() {}

  constexpr TropicalWeightTpl(T f) : FloatWeightTpl<T>(f) {}

  static constexpr TropicalWeightTpl<T> Zero() { return Limits::PosInfinity(); }

  static constexpr TropicalWeightTpl<T> One() { return 0; }

  static constexpr TropicalWeightTpl<T> NoWeight() {
    return Limits::NumberBad();
  }

  static const string &Type() {
    static const string *const type =
        new string(string("tropical") +
                   FloatWeightTpl<T>::GetPrecisionString());
    return *type;
  }

  constexpr bool Member() const {
    // All floating point values except for NaNs and negative infinity are valid
    // tropical weights.
    //
    // Testing membership of a given value can be done by simply checking that
    // it is strictly greater than negative infinity, which fails for negative
    // infinity itself but also for NaNs. This can usually be accomplished in a
    // single instruction (such as *UCOMI* on x86) without branching logic.
    //
    // An additional wrinkle involves constexpr correctness of floating point
    // comparisons against NaN. GCC is uneven when it comes to which expressions
    // it considers compile-time constants. In particular, current versions of
    // GCC do not always consider (nan < inf) to be a constant expression, but
    // do consider (inf < nan) to be a constant expression. (See
    // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88173 and
    // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88683 for details.) In order
    // to allow Member() to be a constexpr function accepted by GCC, we write
    // the comparison here as (-inf < v).
    return Limits::NegInfinity() < Value();
  }

  TropicalWeightTpl<T> Quantize(float delta = kDelta) const {
    if (!Member() || Value() == Limits::PosInfinity()) {
      return *this;
    } else {
      return TropicalWeightTpl<T>(std::floor(Value() / delta + 0.5F) * delta);
    }
  }

  constexpr TropicalWeightTpl<T> Reverse() const { return *this; }

  static constexpr uint64 Properties() {
    return kLeftSemiring | kRightSemiring | kCommutative | kPath | kIdempotent;
  }
};

// Single precision tropical weight.
using TropicalWeight = TropicalWeightTpl<float>;

template <class T>
constexpr TropicalWeightTpl<T> Plus(const TropicalWeightTpl<T> &w1,
                                    const TropicalWeightTpl<T> &w2) {
  return (!w1.Member() || !w2.Member()) ? TropicalWeightTpl<T>::NoWeight()
      : w1.Value() < w2.Value() ? w1 : w2;
}

// See comment at operator==(FloatWeightTpl<float>, FloatWeightTpl<float>)
// for why these overloads are present.
constexpr TropicalWeightTpl<float> Plus(const TropicalWeightTpl<float> &w1,
                                        const TropicalWeightTpl<float> &w2) {
  return Plus<float>(w1, w2);
}

constexpr TropicalWeightTpl<double> Plus(const TropicalWeightTpl<double> &w1,
                                         const TropicalWeightTpl<double> &w2) {
  return Plus<double>(w1, w2);
}

template <class T>
constexpr TropicalWeightTpl<T> Times(const TropicalWeightTpl<T> &w1,
                                     const TropicalWeightTpl<T> &w2) {
  // The following is safe in the context of the Tropical (and Log) semiring
  // for all IEEE floating point values, including infinities and NaNs,
  // because:
  //
  // * If one or both of the floating point Values is NaN and hence not a
  //   Member, the result of addition below is NaN, so the result is not a
  //   Member. This supersedes all other cases, so we only consider non-NaN
  //   values next.
  //
  // * If both Values are finite, there is no issue.
  //
  // * If one of the Values is infinite, or if both are infinities with the
  //   same sign, the result of floating point addition is the same infinity,
  //   so there is no issue.
  //
  // * If both of the Values are infinities with opposite signs, the result of
  //   adding IEEE floating point -inf + inf is NaN and hence not a Member. But
  //   since -inf was not a Member to begin with, returning a non-Member result
  //   is fine as well.
  return TropicalWeightTpl<T>(w1.Value() + w2.Value());
}

constexpr TropicalWeightTpl<float> Times(const TropicalWeightTpl<float> &w1,
                                         const TropicalWeightTpl<float> &w2) {
  return Times<float>(w1, w2);
}

constexpr TropicalWeightTpl<double> Times(const TropicalWeightTpl<double> &w1,
                                          const TropicalWeightTpl<double> &w2) {
  return Times<double>(w1, w2);
}

template <class T>
constexpr TropicalWeightTpl<T> Divide(const TropicalWeightTpl<T> &w1,
                                      const TropicalWeightTpl<T> &w2,
                                      DivideType typ = DIVIDE_ANY) {
  // The following is safe in the context of the Tropical (and Log) semiring
  // for all IEEE floating point values, including infinities and NaNs,
  // because:
  //
  // * If one or both of the floating point Values is NaN and hence not a
  //   Member, the result of subtraction below is NaN, so the result is not a
  //   Member. This supersedes all other cases, so we only consider non-NaN
  //   values next.
  //
  // * If both Values are finite, there is no issue.
  //
  // * If w2.Value() is -inf (and hence w2 is not a Member), the result of ?:
  //   below is NoWeight, which is not a Member.
  //
  //   Whereas in IEEE floating point semantics 0/inf == 0, this does not carry
  //   over to this semiring (since TropicalWeight(-inf) would be the analogue
  //   of floating point inf) and instead Divide(Zero(), TropicalWeight(-inf))
  //   is NoWeight().
  //
  // * If w2.Value() is inf (and hence w2 is Zero), the resulting floating
  //   point value is either NaN (if w1 is Zero or if w1.Value() is NaN) and
  //   hence not a Member, or it is -inf and hence not a Member; either way,
  //   division by Zero results in a non-Member result.
  using Weight = TropicalWeightTpl<T>;
  return w2.Member() ? Weight(w1.Value() - w2.Value()) : Weight::NoWeight();
}

constexpr TropicalWeightTpl<float> Divide(const TropicalWeightTpl<float> &w1,
                                          const TropicalWeightTpl<float> &w2,
                                          DivideType typ = DIVIDE_ANY) {
  return Divide<float>(w1, w2, typ);
}

constexpr TropicalWeightTpl<double> Divide(const TropicalWeightTpl<double> &w1,
                                           const TropicalWeightTpl<double> &w2,
                                           DivideType typ = DIVIDE_ANY) {
  return Divide<double>(w1, w2, typ);
}

// Power(w, n) calculates the n-th power of w with respect to semiring Times.
//
// In the case of the Tropical (and Log) semiring, the exponent n is not
// restricted to be an integer. It can be a floating point value, for example.
//
// In weight.h, a narrower and hence more broadly applicable version of
// Power(w, n) is defined for arbitrary weight types and non-negative integer
// exponents n (of type size_t) and implemented in terms of repeated
// multiplication using Times.
//
// Without further provisions this means that, when an expression such as
//
//   Power(TropicalWeightTpl<float>::One(), static_cast<size_t>(2))
//
// is specified, the overload of Power() is ambiguous. The template function
// below could be instantiated as
//
//   Power<float, size_t>(const TropicalWeightTpl<float> &, size_t)
//
// and the template function defined in weight.h (further specialized below)
// could be instantiated as
//
//   Power<TropicalWeightTpl<float>>(const TropicalWeightTpl<float> &, size_t)
//
// That would lead to two definitions with identical signatures, which results
// in a compilation error. To avoid that, we hide the definition of Power<T, V>
// when V is size_t, so only Power<W> is visible. Power<W> is further
// specialized to Power<TropicalWeightTpl<...>>, and the overloaded definition
// of Power<T, V> is made conditionally available only to that template
// specialization.

template <class T, class V,
          bool Enable = !std::is_same<V, size_t>::value,
          typename std::enable_if<Enable>::type * = nullptr>
constexpr TropicalWeightTpl<T> Power(const TropicalWeightTpl<T> &w, V n) {
  using Weight = TropicalWeightTpl<T>;
  return (!w.Member() || n != n) ? Weight::NoWeight()
      : (n == 0 || w == Weight::One()) ? Weight::One()
      : Weight(w.Value() * n);
}

// Specializes the library-wide template to use the above implementation; rules
// of function template instantiation require this be a full instantiation.

template <>
constexpr TropicalWeightTpl<float> Power<TropicalWeightTpl<float>>(
    const TropicalWeightTpl<float> &weight, size_t n) {
  return Power<float, size_t, true>(weight, n);
}

template <>
constexpr TropicalWeightTpl<double> Power<TropicalWeightTpl<double>>(
    const TropicalWeightTpl<double> &weight, size_t n) {
  return Power<double, size_t, true>(weight, n);
}


// Log semiring: (log(e^-x + e^-y), +, inf, 0).
template <class T>
class LogWeightTpl : public FloatWeightTpl<T> {
 public:
  using typename FloatWeightTpl<T>::ValueType;
  using FloatWeightTpl<T>::Value;
  using ReverseWeight = LogWeightTpl;
  using Limits = FloatLimits<T>;

  LogWeightTpl() noexcept : FloatWeightTpl<T>() {}

  constexpr LogWeightTpl(T f) : FloatWeightTpl<T>(f) {}

  static constexpr LogWeightTpl Zero() { return Limits::PosInfinity(); }

  static constexpr LogWeightTpl One() { return 0; }

  static constexpr LogWeightTpl NoWeight() { return Limits::NumberBad(); }

  static const string &Type() {
    static const string *const type =
        new string(string("log") + FloatWeightTpl<T>::GetPrecisionString());
    return *type;
  }

  constexpr bool Member() const {
    // The comments for TropicalWeightTpl<>::Member() apply here unchanged.
    return Limits::NegInfinity() < Value();
  }

  LogWeightTpl<T> Quantize(float delta = kDelta) const {
    if (!Member() || Value() == Limits::PosInfinity()) {
      return *this;
    } else {
      return LogWeightTpl<T>(std::floor(Value() / delta + 0.5F) * delta);
    }
  }

  constexpr LogWeightTpl<T> Reverse() const { return *this; }

  static constexpr uint64 Properties() {
    return kLeftSemiring | kRightSemiring | kCommutative;
  }
};

// Single-precision log weight.
using LogWeight = LogWeightTpl<float>;

// Double-precision log weight.
using Log64Weight = LogWeightTpl<double>;

namespace internal {

// -log(e^-x + e^-y) = x - LogPosExp(y - x), assuming x >= 0.0.
inline double LogPosExp(double x) {
  DCHECK(!(x < 0));  // NB: NaN values are allowed.
  return log1p(exp(-x));
}

// -log(e^-x - e^-y) = x - LogNegExp(y - x), assuming x > 0.0.
inline double LogNegExp(double x) {
  DCHECK_GT(x, 0);
  return log1p(-exp(-x));
}

// a +_log b = -log(e^-a + e^-b) = KahanLogSum(a, b, ...).
// Kahan compensated summation provides an error bound that is
// independent of the number of addends. Assumes b >= a;
// c is the compensation.
inline double KahanLogSum(double a, double b, double *c) {
  DCHECK_GE(b, a);
  double y = -LogPosExp(b - a) - *c;
  double t = a + y;
  *c = (t - a) - y;
  return t;
}

// a -_log b = -log(e^-a - e^-b) = KahanLogDiff(a, b, ...).
// Kahan compensated summation provides an error bound that is
// independent of the number of addends. Assumes b > a;
// c is the compensation.
inline double KahanLogDiff(double a, double b, double *c) {
  DCHECK_GT(b, a);
  double y = -LogNegExp(b - a) - *c;
  double t = a + y;
  *c = (t - a) - y;
  return t;
}

}  // namespace internal

template <class T>
inline LogWeightTpl<T> Plus(const LogWeightTpl<T> &w1,
                            const LogWeightTpl<T> &w2) {
  using Limits = FloatLimits<T>;
  const T f1 = w1.Value();
  const T f2 = w2.Value();
  if (f1 == Limits::PosInfinity()) {
    return w2;
  } else if (f2 == Limits::PosInfinity()) {
    return w1;
  } else if (f1 > f2) {
    return LogWeightTpl<T>(f2 - internal::LogPosExp(f1 - f2));
  } else {
    return LogWeightTpl<T>(f1 - internal::LogPosExp(f2 - f1));
  }
}

inline LogWeightTpl<float> Plus(const LogWeightTpl<float> &w1,
                                const LogWeightTpl<float> &w2) {
  return Plus<float>(w1, w2);
}

inline LogWeightTpl<double> Plus(const LogWeightTpl<double> &w1,
                                 const LogWeightTpl<double> &w2) {
  return Plus<double>(w1, w2);
}

template <class T>
constexpr LogWeightTpl<T> Times(const LogWeightTpl<T> &w1,
                                const LogWeightTpl<T> &w2) {
  // The comments for Times(Tropical...) above apply here unchanged.
  return LogWeightTpl<T>(w1.Value() + w2.Value());
}

constexpr LogWeightTpl<float> Times(const LogWeightTpl<float> &w1,
                                    const LogWeightTpl<float> &w2) {
  return Times<float>(w1, w2);
}

constexpr LogWeightTpl<double> Times(const LogWeightTpl<double> &w1,
                                     const LogWeightTpl<double> &w2) {
  return Times<double>(w1, w2);
}

template <class T>
constexpr LogWeightTpl<T> Divide(const LogWeightTpl<T> &w1,
                                 const LogWeightTpl<T> &w2,
                                 DivideType typ = DIVIDE_ANY) {
  // The comments for Divide(Tropical...) above apply here unchanged.
  using Weight = LogWeightTpl<T>;
  return w2.Member() ? Weight(w1.Value() - w2.Value()) : Weight::NoWeight();
}

constexpr LogWeightTpl<float> Divide(const LogWeightTpl<float> &w1,
                                     const LogWeightTpl<float> &w2,
                                     DivideType typ = DIVIDE_ANY) {
  return Divide<float>(w1, w2, typ);
}

constexpr LogWeightTpl<double> Divide(const LogWeightTpl<double> &w1,
                                      const LogWeightTpl<double> &w2,
                                      DivideType typ = DIVIDE_ANY) {
  return Divide<double>(w1, w2, typ);
}

// The comments for Power<>(Tropical...) above apply here unchanged.

template <class T, class V,
          bool Enable = !std::is_same<V, size_t>::value,
          typename std::enable_if<Enable>::type * = nullptr>
constexpr LogWeightTpl<T> Power(const LogWeightTpl<T> &w, V n) {
  using Weight = LogWeightTpl<T>;
  return (!w.Member() || n != n) ? Weight::NoWeight()
      : (n == 0 || w == Weight::One()) ? Weight::One()
      : Weight(w.Value() * n);
}

// Specializes the library-wide template to use the above implementation; rules
// of function template instantiation require this be a full instantiation.

template <>
constexpr LogWeightTpl<float> Power<LogWeightTpl<float>>(
    const LogWeightTpl<float> &weight, size_t n) {
  return Power<float, size_t, true>(weight, n);
}

template <>
constexpr LogWeightTpl<double> Power<LogWeightTpl<double>>(
    const LogWeightTpl<double> &weight, size_t n) {
  return Power<double, size_t, true>(weight, n);
}

// Specialization using the Kahan compensated summation.
template <class T>
class Adder<LogWeightTpl<T>> {
 public:
  using Weight = LogWeightTpl<T>;

  explicit Adder(Weight w = Weight::Zero())
      : sum_(w.Value()),
        c_(0.0) { }

  Weight Add(const Weight &w) {
    using Limits = FloatLimits<T>;
    const T f = w.Value();
    if (f == Limits::PosInfinity()) {
      return Sum();
    } else if (sum_ == Limits::PosInfinity()) {
      sum_ = f;
      c_ = 0.0;
    } else if (f > sum_) {
      sum_ = internal::KahanLogSum(sum_, f, &c_);
    } else {
      sum_ = internal::KahanLogSum(f, sum_, &c_);
    }
    return Sum();
  }

  Weight Sum() { return Weight(sum_); }

  void Reset(Weight w = Weight::Zero()) {
    sum_ = w.Value();
    c_ = 0.0;
  }

 private:
  double sum_;
  double c_;   // Kahan compensation.
};

// MinMax semiring: (min, max, inf, -inf).
template <class T>
class MinMaxWeightTpl : public FloatWeightTpl<T> {
 public:
  using typename FloatWeightTpl<T>::ValueType;
  using FloatWeightTpl<T>::Value;
  using ReverseWeight = MinMaxWeightTpl<T>;
  using Limits = FloatLimits<T>;

  MinMaxWeightTpl() noexcept : FloatWeightTpl<T>() {}

  constexpr MinMaxWeightTpl(T f) : FloatWeightTpl<T>(f) {}  // NOLINT

  static constexpr MinMaxWeightTpl Zero() { return Limits::PosInfinity(); }

  static constexpr MinMaxWeightTpl One() { return Limits::NegInfinity(); }

  static constexpr MinMaxWeightTpl NoWeight() { return Limits::NumberBad(); }

  static const string &Type() {
    static const string *const type =
        new string(string("minmax") + FloatWeightTpl<T>::GetPrecisionString());
    return *type;
  }

  // Fails for IEEE NaN.
  constexpr bool Member() const { return Value() == Value(); }

  MinMaxWeightTpl<T> Quantize(float delta = kDelta) const {
    // If one of infinities, or a NaN.
    if (!Member() ||
        Value() == Limits::NegInfinity() || Value() == Limits::PosInfinity()) {
      return *this;
    } else {
      return MinMaxWeightTpl<T>(std::floor(Value() / delta + 0.5F) * delta);
    }
  }

  constexpr MinMaxWeightTpl<T> Reverse() const { return *this; }

  static constexpr uint64 Properties() {
    return kLeftSemiring | kRightSemiring | kCommutative | kIdempotent | kPath;
  }
};

// Single-precision min-max weight.
using MinMaxWeight = MinMaxWeightTpl<float>;

// Min.
template <class T>
constexpr MinMaxWeightTpl<T> Plus(const MinMaxWeightTpl<T> &w1,
                               const MinMaxWeightTpl<T> &w2) {
  return (!w1.Member() || !w2.Member()) ? MinMaxWeightTpl<T>::NoWeight()
      : w1.Value() < w2.Value() ? w1 : w2;
}

constexpr MinMaxWeightTpl<float> Plus(const MinMaxWeightTpl<float> &w1,
                                      const MinMaxWeightTpl<float> &w2) {
  return Plus<float>(w1, w2);
}

constexpr MinMaxWeightTpl<double> Plus(const MinMaxWeightTpl<double> &w1,
                                       const MinMaxWeightTpl<double> &w2) {
  return Plus<double>(w1, w2);
}

// Max.
template <class T>
constexpr MinMaxWeightTpl<T> Times(const MinMaxWeightTpl<T> &w1,
                                   const MinMaxWeightTpl<T> &w2) {
  return (!w1.Member() || !w2.Member()) ? MinMaxWeightTpl<T>::NoWeight()
      : w1.Value() >= w2.Value() ? w1 : w2;
}

constexpr MinMaxWeightTpl<float> Times(const MinMaxWeightTpl<float> &w1,
                                       const MinMaxWeightTpl<float> &w2) {
  return Times<float>(w1, w2);
}

constexpr MinMaxWeightTpl<double> Times(const MinMaxWeightTpl<double> &w1,
                                        const MinMaxWeightTpl<double> &w2) {
  return Times<double>(w1, w2);
}

// Defined only for special cases.
template <class T>
constexpr MinMaxWeightTpl<T> Divide(const MinMaxWeightTpl<T> &w1,
                                    const MinMaxWeightTpl<T> &w2,
                                    DivideType typ = DIVIDE_ANY) {
  return w1.Value() >= w2.Value() ? w1 : MinMaxWeightTpl<T>::NoWeight();
}

constexpr MinMaxWeightTpl<float> Divide(const MinMaxWeightTpl<float> &w1,
                                        const MinMaxWeightTpl<float> &w2,
                                        DivideType typ = DIVIDE_ANY) {
  return Divide<float>(w1, w2, typ);
}

constexpr MinMaxWeightTpl<double> Divide(const MinMaxWeightTpl<double> &w1,
                                         const MinMaxWeightTpl<double> &w2,
                                         DivideType typ = DIVIDE_ANY) {
  return Divide<double>(w1, w2, typ);
}

// Converts to tropical.
template <>
struct WeightConvert<LogWeight, TropicalWeight> {
  constexpr TropicalWeight operator()(const LogWeight &w) const {
    return w.Value();
  }
};

template <>
struct WeightConvert<Log64Weight, TropicalWeight> {
  constexpr TropicalWeight operator()(const Log64Weight &w) const {
    return w.Value();
  }
};

// Converts to log.
template <>
struct WeightConvert<TropicalWeight, LogWeight> {
  constexpr LogWeight operator()(const TropicalWeight &w) const {
    return w.Value();
  }
};

template <>
struct WeightConvert<Log64Weight, LogWeight> {
  constexpr LogWeight operator()(const Log64Weight &w) const {
    return w.Value();
  }
};

// Converts to log64.
template <>
struct WeightConvert<TropicalWeight, Log64Weight> {
  constexpr Log64Weight operator()(const TropicalWeight &w) const {
    return w.Value();
  }
};

template <>
struct WeightConvert<LogWeight, Log64Weight> {
  constexpr Log64Weight operator()(const LogWeight &w) const {
    return w.Value();
  }
};

// This function object returns random integers chosen from [0,
// num_random_weights). The boolean 'allow_zero' determines whether Zero() and
// zero divisors should be returned in the random weight generation. This is
// intended primary for testing.
template <class Weight>
class FloatWeightGenerate {
 public:
  explicit FloatWeightGenerate(
      bool allow_zero = true,
      const size_t num_random_weights = kNumRandomWeights)
      : allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}

  Weight operator()() const {
    const int n = rand() % (num_random_weights_ + allow_zero_);  // NOLINT
    if (allow_zero_ && n == num_random_weights_) return Weight::Zero();
    return Weight(n);
  }

 private:
  // Permits Zero() and zero divisors.
  const bool allow_zero_;
  // Number of alternative random weights.
  const size_t num_random_weights_;
};

template <class T>
class WeightGenerate<TropicalWeightTpl<T>>
    : public FloatWeightGenerate<TropicalWeightTpl<T>> {
 public:
  using Weight = TropicalWeightTpl<T>;
  using Generate = FloatWeightGenerate<Weight>;

  explicit WeightGenerate(bool allow_zero = true,
                          size_t num_random_weights = kNumRandomWeights)
      : Generate(allow_zero, num_random_weights) {}

  Weight operator()() const { return Weight(Generate::operator()()); }
};

template <class T>
class WeightGenerate<LogWeightTpl<T>>
    : public FloatWeightGenerate<LogWeightTpl<T>> {
 public:
  using Weight = LogWeightTpl<T>;
  using Generate = FloatWeightGenerate<Weight>;

  explicit WeightGenerate(bool allow_zero = true,
                          size_t num_random_weights = kNumRandomWeights)
      : Generate(allow_zero, num_random_weights) {}

  Weight operator()() const { return Weight(Generate::operator()()); }
};

// This function object returns random integers chosen from [0,
// num_random_weights). The boolean 'allow_zero' determines whether Zero() and
// zero divisors should be returned in the random weight generation. This is
// intended primary for testing.
template <class T>
class WeightGenerate<MinMaxWeightTpl<T>> {
 public:
  using Weight = MinMaxWeightTpl<T>;

  explicit WeightGenerate(bool allow_zero = true,
                          size_t num_random_weights = kNumRandomWeights)
      : allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}

  Weight operator()() const {
    const int n = (rand() %  // NOLINT
                   (2 * num_random_weights_ + allow_zero_)) -
                  num_random_weights_;
    if (allow_zero_ && n == num_random_weights_) {
      return Weight::Zero();
    } else if (n == -num_random_weights_) {
      return Weight::One();
    } else {
      return Weight(n);
    }
  }

 private:
  // Permits Zero() and zero divisors.
  const bool allow_zero_;
  // Number of alternative random weights.
  const size_t num_random_weights_;
};

}  // namespace fst

#endif  // FST_FLOAT_WEIGHT_H_